Skip to main content

Endothelial Barrier Dynamics: Studies in a Cell-Column Model of the Microvasculature

  • Chapter
Book cover Whole Organ Approaches to Cellular Metabolism
  • 93 Accesses

Abstract

Endothelial cells form continuous monolayers that restrict the transport of solutes across the endothelial layer (Renkin, 1952; Simionescu, 1983; Albelda et al., 1988; Haselton et al., 1989, 1992a, 1992b). Experimental evidence continues to accumulate in support of the hypothesis that the endothelial cell monolayer lining the intravascular space is an important determinant of normal transcapillary barrier. The majority of transendothelial solute exchange appears to take place para-cellularly and is thought to occur at interendothelial junctions (Shasby et al., 1982; Shasby and Shasby, 1986; Haselton et al., 1989, 1992). Many physiological agents modify the endothelial barrier, but maintenance and regulation of solute transport across the endothelium remains poorly understood. In vivo measurements of microvascular transcapillary permeability are difficult to obtain and quantify. One of the principal difficulties is that, as in other microvascular systems, the measurement of microvascular permeability can be affected by changes in capillary recruitment and/or hydrostatic pressure. For these reasons, investigators have sought to study vascular barrier maintenance and regulation in vitro. One of the approaches that has proven useful is the in vitro investigations of the properties of cultured endothelium. A key property of endothelium that makes these studies feasible is that, with the proper substrate conditions, in vitro endothelial cells retain their in vivo growth characteristics and form confluent monolayers. One method of investigation that has proven useful is the study of the dynamic properties of the endothelial in vitro transport barrier through the use of systems that detect and quantify changes in endothelial monolayer permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkins, W.K., J.W. Barnard, T.M. Moore, R.C. Allison, V.R. Prasad, and A.E. Taylor. Adenosine prevents PMA-induced lung injury via an A2 receptor mechanism. J. Appl. Physiol. 74(3):982–988, 1993.

    PubMed  CAS  Google Scholar 

  • Albelda, S.M. Endothelial and epithelial cell adhesion molecules. Am. J. Resp. Cell Mol. Biol. 4:195–203, 1991.

    CAS  Google Scholar 

  • Albelda, S.M., P.M. Sampson, F.R. Haselton, J.M. McNiff, S.N. Mueller, S.K. Williams, A.P. Fishman, and E.M. Levine. Permeability characteristics of cultured endothelial monolayers. J. Appl. Physiol. 64(1):308–322, 1988.

    PubMed  CAS  Google Scholar 

  • Alexander, J.S. and F.R. Haselton. An N-cadherin-like protein contributes to solute barrier maintenance in cultured endothelium. J. Cell. Physiol. 156:610–618, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, J.S., H.B. Hechtman, and D. Shepro. Phalloidin improves endothelial barrier function and protects against inflammatory agent mediated permeability in vitro. Microvase. Res. 35:308–315, 1988.

    Article  CAS  Google Scholar 

  • Alexander, J.S., W.F. Patton, B. Christman, L. Larsen, and F.R. Haselton. Platelet-derived lysophosphatidic acid decreases endothelial permeability in vitro. Am. J. Physiol. (in press).

    Google Scholar 

  • Baird, A. and T. Durkin. Inhibition of endothelial cell profileration by type B transforming growth factor: Interaction with acidic and basic FGF. Biochem. Biophys. Res. Comm. 138:476–482, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Blaschuk, O.W., R. Sullivan, and Y. Pouliot. Identification of a Cadherin cell adhesion recognition sequence. Develop. Biol. 139:227–229, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Bottaro, D., D. Shepro, and H.B. Hechtman. Heterogeneity of intimai and microvessel endothelial cell barriers in vitro. Microvasc. Res. 32:389–398, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Brigham, K.L. (ed) Endotoxin and the Lungs. New York: Marcel Dekker, Inc., 1994.

    Google Scholar 

  • Bureau, M.F., E. Malanchere, M. Pretolani, M.A. Boukili, and B.B. Vargafig. A new method to evaluate extravascular albumin and blood cell accumulation in the lung. J. Appl. Physiol. 67(4): 1479–1488, 1989.

    PubMed  CAS  Google Scholar 

  • Casnocha, S.A., S.G. Eskin, E.R. Hall, and L.V. McIntire. Permeability of human endothelial monolayers: Effect of vasoactive agonists and cAMP. J. Appl. Physiol. 67(5): 1997–2005, 1989.

    PubMed  CAS  Google Scholar 

  • Cooper, J.A., P.J. Del Vecchio, F.L. Minnear, K.E. Burhop, W.M. Selig, J.G.N. Garcia, and A.B. Malik. Measurement of albumin permeability across endothlial monolayers in vitro. J. Appl. Physiol. 62(3): 1076–1083, 1987.

    PubMed  CAS  Google Scholar 

  • Crone, C. Permeability of capillaries in various organs as determined by use of the indicator diffusion method. Acta Physiol. Scand. 48:292–305, 1963.

    Article  Google Scholar 

  • Croughan, M.S., J.F. Hamel, and D.I.C. Wang. Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotech, and Bioeng. 29:130–141, 1987.

    Article  CAS  Google Scholar 

  • Curry, F.E. Determinants of capillary permeability. A review of mechanisms based on single capillary studies in the frog. Circ. Res. 59:367–380, 1986.

    PubMed  CAS  Google Scholar 

  • Doerschuk, C.M., G.P. Downey, D.E. Doherty, D. English, R.P. Gie, M. Ohgami, G.S. Worthen, P.M. Henson, and J.C. Hogg. Leukocyte and platelet margination within microvasculature of rabbit lungs. J. Appl. Physiol. 68(5): 1956–1961, 1990.

    PubMed  CAS  Google Scholar 

  • Eaton, B.M., V.J. Toothill, H.A. Davies, J.D. Pearson, and G.E. Mann. Permeability of human venous endothelial cell monolayers perfused in microcarrier cultures: Effect of flow rate, thrombin, and cytochalasin D. J. Cell. Physiol. 149:88–99, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Franke, W.W., P. Cowin, C. Grund, C. Kuhn, and H.P. Kapprell. The endothelial junction. The junction and its components. In: Endothelial Cell Biology in Health and Disease, edited by N. Simionescu and M. Simionescu. New York: Plenum Press, 1988.

    Google Scholar 

  • Gallik, S., S. Usami, K.M. Jan, and S. Chien. Shear-stress induced detachment of human polymorphonuclear leukocytes from endothelial monolayers. Biorheology 26:823–834, 1988.

    Google Scholar 

  • Garcia, J.G.N., A. Siflinger-Birnboim, R. Bizios, P.J. Del Vicchio, J.W. Fenton, and A.B. Malik. Thrombin induced increase in albumin permeability across endothelium. J. Cell. Physiol. 128:96–104, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Gillies, M.C., T. Su, and D. Naidoo. Electrical resistance and macromolecular permeability of retinal capillary endothelial cells in vitro. Curr. Eye Res. 14(6):435–442, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Gumbiner, B. and K. Simons. A functional assay for proteins involved in establishing an epithelial occluding barrier: Identification of a uvomorulin-like polypeptide. J. Cell Bio. 102:457–468, 1986.

    Article  CAS  Google Scholar 

  • Gumbiner, B., B. Stevenson, and A. Grimaldi. The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex. J. Cell Biol. 107:1575–1587, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Harlan, J.M., B.R. Schwartz, M.A. Reidy, S.M. Schwartz, H. Ochs, and L.A. Harker. Activated neutrophils disrupt endothelial monolayer integrity by an oxygen radical independent mechanism. Lab Invest. 52(2): 141–150, 1985.

    PubMed  CAS  Google Scholar 

  • Harris, T.R. and R.J. Roselli. Exchange of small molecules in the normal and abnormal lung circulatory bed. In: Respiratory Physiology: An Analytical Approach, edited by H.K. Chang and M. Paiva, Vol. 40. (Lung Biol. Health Dis. Ser.). New York: Dekker. 1989.

    Google Scholar 

  • Haselton, F.R. and J.S. Alexander. Platelets and platelet releasate enhance endothelial barrier. Am. J. Physiol. 263(Lung Cell Molecular Physiol. 7):L670–L678, 1992.

    Google Scholar 

  • Haselton, F.R. and R.L. Heimark. Role of Cadherins 5 and 13 in the aortic endothelial barrier. J. Cell Physiol. 171:243–251, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Haselton, F.R., S.N. Mueller, R.E. Howell, E.M. Levine, and A.P. Fishman. Chromatographic demonstration of reversible changes in endothelial permeability. J. Appl. Physiol. 67:2032–2048, 1989.

    PubMed  CAS  Google Scholar 

  • Haselton, F.R., J.S. Alexander, S.N. Mueller, and A.P. Fishman. Modulators of endothelial permeability: A mechanistic approach. In: Endothelial Cell Biology in Health and Disease, edited by N. Simionescu and M. Simionescu. New York: Raven Press, pp. 103–126, 1992a.

    Google Scholar 

  • Haselton, F.R., J.S. Alexander, S.N. Mueller, and A.P. Fishman. Modulation of endothelial paracellular permeability: A mechanistic approach. In: Endothelial Biology in Health and Disease, edited by M. Simionescu and N. Simionescu. New York: Plenum Press, 1992b.

    Google Scholar 

  • Haselton, F.R., J.S. Alexander, and S.N. Mueller. Adenosine decreases permeability of endothelial monolayers. J. Appl. Physiol. 74(4): 1581–1590, 1993.

    PubMed  CAS  Google Scholar 

  • Haselton, F.R., J.S. Alexander, E. Dworska, S.S. Evans, and L.H. Hoffman. Modulation of retinal endothelial barrier in an in vitro model of the retinal microvasculature. Exp. Eye Res. 63:211–222, 1996a.

    Article  PubMed  CAS  Google Scholar 

  • Haselton, F.R., J. Woodall, and J.S. Alexander. Neutrophil effects in a cell-column model of the microvasculature: Effects of fMLP. Microcirc. 3:329–342, 1996b.

    Article  CAS  Google Scholar 

  • Heimark R.L. Calcium-dependent and calcium-independent cell adhesion molecules in the endothelium. Ann N. Y. Acad. Sci. 614:229–239, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, V.H. and F.E. Curry. Albumin modulation of capillary permeability: Tests of an adsorption hypothesis. Am. J. Physiol. (Heart Circ. Physiol. 17):H1264–HH272, 1985.

    Google Scholar 

  • Killackey, J.J.F. and B.A. Killackey. Neutrophil-mediated increased permeability of microcarrier-cultured endothelial monolayers: a model for the in vitro study of neutrophil-dependent mediators of vasopermeabiiity. Can. J. Physiol. Pharmacol. 68:836–844, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Killackey, J.J., M.G. Johnston, and H.A. Mozat. Increased permeability of microcarrier-cultured endothelial monolayers in response to histamine and thrombin. Am. J.Pathol. 122:50–61, 1986.

    PubMed  CAS  Google Scholar 

  • Lawrence, M.B., L.V. McIntire, and S.G. Eskin. Effect of flow on polymorphonuclear leukocyte/endothelial cell adhesion. Blood 70(5): 1284–1290, 1987.

    PubMed  CAS  Google Scholar 

  • Lum, H. and A.B. Malik. Regulation of vascular endothelial barrier function. Am. J. Physiol. 261(Lung Cell. Mol. Physiol. 11):L223–L241, 1994.

    Google Scholar 

  • Mitra P., C.R. Keese, and I. Giaever. Electric measurements can be sued to monitor the attachment and spreading of cells in tissue culture. Biotechniques 11(4):504–510, 1991.

    PubMed  CAS  Google Scholar 

  • Nose, A., K. Tsuji, and M. Takeichi. Localization of specificity determining sites in Cadherin cell adhesion molecules. Cell 61:147–155, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Nuijens, J.H., J.J. Abbink, Y.T. Wachtfogel, R.W. Colman, A.J. Berenberg, D. Dors, A.J. Kamp, R.J. Strack van Schijndel, L.G. Thijs, and C.B. Hack. Plasma elastase alpha-1-antitrypsin and lactoferrin in sepsis: Evidence for neutrophils as mediators in fatal sepsis. J. Lab. Clin. Med. 119(2): 159–168, 1992.

    PubMed  CAS  Google Scholar 

  • Orlidge, A. and P.A. D’Amore. Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J. Cell Biol. 105:1455–1462, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Renkin, E.M. Capillary permeability to lipid-soluble molecules. Am. J. Physiol. 168:538–545, 1952.

    PubMed  CAS  Google Scholar 

  • Sangren, W.C. and C.W. Sheppard. Mathematical derivation of the exchange of a labelled substance between a liquid flowing in a vessel and an external compartment. Bull. Math. Biophys. 15:387–394, 1953.

    Article  CAS  Google Scholar 

  • Seekamp, A., A. Dwenger, M. Weidner, G. Regel, and J.A. Sturm. Effect of recurrent endotoxemia on hemodynamics, lung function and neutrophil activation in sheep. Eur. Surg. Res. 24(3): 143–154, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Shasby, D.M., S.S. Shasby, J.M. Sullivan, and M.J. Peach. Role of endothelial cell cytoskeleton in control of endothelial permeability. Circ. Res. 51:657–661, 1982.

    PubMed  CAS  Google Scholar 

  • Shasby, D.M. and S.S. Shasby. Effects of calcium on transendothelial albumin transfer and electrical resistance. J. Appl. Physiol. 60(1):71–79, 1986.

    PubMed  CAS  Google Scholar 

  • Shasby, D.M., S.E. Lind, S.S. Shasby, J.C. Goldsmith, and G.W. Hunninghake. Reversible oxidant-induced increases in albumin transfer across cultured endothelium: Alterations in cell shape and calcium homestasis. Blood 65(3):605–614, 1985.

    PubMed  CAS  Google Scholar 

  • Shasby, D.M., S.S. Shasby, and M.J. Peach. Granulocytes and phorbol myristate acetate increase permeability to albumin of cultured endothelial monolayers and isolated perfused lungs. Am. Rev. Respir. Dis. 127:143, 1983.

    Google Scholar 

  • Simionescu, N. Cellular aspects of transcapillary exchange. Physiol. Rev. 63(4): 1536–1578, 1983.

    PubMed  CAS  Google Scholar 

  • Sims, D.E. The pericyte—A review. Tissue and Cell 18:153–174, 1986.

    Article  PubMed  CAS  Google Scholar 

  • Springer, T.A. Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell 76:301–304, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Tiruppathi, C., A.B. Malik, P.J. Del Vecchio, C.R. Keese, and I. Giaver. Electrical method for detection of endothelial cell shape change in real time: Assessment of endothelial barrier function. Proc. Nat. Acad. Sci. 89:7919–7923, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Volk, T. and B. A. Geiger. CAM: A 135-kD receptor of intercellular adherens junctions. I. Immunoelectrom microscopic localization and biochemical studies. J. Cell Biol. 103:1441–1450, 1986a.

    Article  PubMed  CAS  Google Scholar 

  • Volk, T. and B. Geiger. A-CAM: A 135-kD receptor of intercellular adherens junctions. II. Antibody-mediated modulation of junction formation. J. Cell Biol. 103(4): 1451–1464, 1986b.

    Article  PubMed  CAS  Google Scholar 

  • Waters, C.M. Flow-induced modulation of the permeability of endothelial cells cultured on microcarrier beads. J. Cell. Physiol. 168(2):403–411, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, S.J. Tissue destruction by neutrophils. New Engl. J. Med. 320(6):365–376, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Worthen, G.S., L.A. Smedly, M.G. Tonnensen, D. Ellis, N.F. Voelkel, J.T. Reeves, and P.M. Henson. Effects of shear stress on adhesive interaction between neutrophils and cultured endothelial cells. J. Appl. Physiol. 63:2031–2041, 1987.

    PubMed  CAS  Google Scholar 

  • Yi, E.S. and T.R. Ulich. Endotoxin, interleukin-1, and tumor necrosis factor cause neutrophil-dependent microvascular leakage in postcapillary venules. Am. J. Pathol. 140(3):659–663, 1992.

    PubMed  CAS  Google Scholar 

  • Zimmerman, B.J. and D.N. Granger. Reperfusion-induced leukocyte infiltration: Role of elastase. Am. J. Physiol. 259(Heart Circ. Physiol.):H390–H394, 1990.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Haselton, F.R. (1998). Endothelial Barrier Dynamics: Studies in a Cell-Column Model of the Microvasculature. In: Bassingthwaighte, J.B., Linehan, J.H., Goresky, C.A. (eds) Whole Organ Approaches to Cellular Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2184-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2184-5_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7449-0

  • Online ISBN: 978-1-4612-2184-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics