Skip to main content

Interactions Between Bovine Adrenal Medulla Endothelial and Chromaffin Cells

  • Chapter
Whole Organ Approaches to Cellular Metabolism

Abstract

Many substances normally present in blood and those released during inflammation or tissue damage can, if they reach threshold concentration, stimulate endothelial cells (ECs) to increase synthesis and secretion of nitric oxide (1) and prostacyclin (2). These products induce smooth muscle cell relaxation and consequently vasodilatation (3). Another EC response evoked by these substances consists on increased transvascular permeability to small solutes and water across intercellular junctions (4, 5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blatter, L. A., Z, Taha, S. Mesaros, P. S. Shacklock, W. G. Wier, and T. Malinsky. Simultaneous measurement of Ca2+ and nitric oxide in bradykinin-stimulated vascular endothelial cells. Circ. Res. 76:922–924, 1995.

    PubMed  CAS  Google Scholar 

  2. Watanabe, K., G. Lam, and E. A. Jaffe. The correlation between rises in intracellular calcium and PGI2 production in cultured vascular endothelial cells. Prostaglandins, Leukotrienes and Essential Fatty Acids 46:211–214, 1992.

    Article  CAS  Google Scholar 

  3. Jaffe, E. A. Physiological functions of normal endothelial cells. In: Vascular Medicine, edited by J. Loscalzo, M. A. Creager, and V. J. Dzau. Boston: Little Brown and Company, pp. 1–19, 1992.

    Google Scholar 

  4. He, P., X. Zhang, and F. E. Curry. Ca2+ entry through conductive pathway modulated receptor-mediated increase in microvessel permeability. Am. J. Physiol. 271:H2377–H2387, 1996.

    PubMed  CAS  Google Scholar 

  5. Curry, F. E. Modulation of venular microvessel permeability by calcium influx into endothelial cells. FASEB J. 6:2456–2466, 1992.

    PubMed  CAS  Google Scholar 

  6. Himmel, H. M., ARA. Whorton, and H. C. Strauss. Intracellular calcium, currents and stimulus-response coupling in endothelial cells. Hypertension 21:112–127, 1993.

    PubMed  CAS  Google Scholar 

  7. Johns, A., T. V. Lategan, N. C. Lodge, U. S. Ryan, C. Van Bremen, and J. Adams. Calcium entry through receptor-operated channels in bovine pulmonary artery endothelial cells. Tissue and Cell 19(6):733–745, 1987.

    Article  PubMed  CAS  Google Scholar 

  8. Colden-Stanfield, M., W. P. Schilling, A. K. Ritchie, S. G. Eskin, L. T. Navarro, and D. L. Kunze. Bradykinin-induced increases in cytosolic calcium and ionic currents in cultured bovine aortic endothelial cells. Circ. Res. 61:632–640, 1987.

    PubMed  CAS  Google Scholar 

  9. Morgan-Boyd, R., J. M. Stewart, R. J. Vavrek, and A. Hassid. Effects of bradykinin and angiotensin II on intracellular Ca2+ dynamics in endothelial cells. Am. J. Physiol. 253:C588–C598, 1987.

    PubMed  CAS  Google Scholar 

  10. Ryan, U. S., P. V. Avdonin, E. Y. Posin, E. G. Popov, S. M. Danilov, and V. A. Tkachuk. Influence of vasoactive agents on cytoplasmic free calcium in vascular endothelial cells. J. Appl. Physiol. 65:2221–2227, 1988.

    PubMed  CAS  Google Scholar 

  11. Adams, A. D., R. Lackey, and C. Van Bremen. Ion channels and regulation of intracellular calcium in vascular endothelial cells. FASEB J. 3:2390–2400, 1989.

    Google Scholar 

  12. Vargas, F. F., S. Calvo, R. Vinet, E. Garde, and E. Rojas. Cytosolic calcium rise evoked by voltage-gated calcium channels activation in adrenal medulla endothelial cells. Biol. Res. (in press).

    Google Scholar 

  13. Bean, B. P. Classes of calcium channels in vertebrate cells. Ann. Rev. Physiol. 51:367–384, 1989.

    Article  CAS  Google Scholar 

  14. Hess, P. Calcium channels in vertebrate cells. Annu. Rev. Neurosci. 13:337–356, 1990.

    Article  PubMed  CAS  Google Scholar 

  15. Tsien, R. W., D. Lipscombe, D. V. Madison, K. R. Bley, A. P. Fox. Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci. 11:431–438, 1988.

    Article  PubMed  CAS  Google Scholar 

  16. Estacion, M. and L. J. Mordan. Expression of voltage-gated calcium channels correlates with PDGF-stimulated calcium influx and depends upon cell density in C3H 10T1/2 mouse fibroblasts. Cell Calcium 14:161–171, 1993.

    Article  PubMed  CAS  Google Scholar 

  17. Misler, S., D. W. Barnett, D. M. Pressel, K. D. Gillis, D. W. Scharp, and L. C. Falke. Stimulus-secretion coupling in β-cells of transplantable human islets of Langerhans. Diabetes 41:662–670, 1992.

    Article  PubMed  CAS  Google Scholar 

  18. Rojas, E., P. Carroll, C. Ricordi, A. Boschero, S. Stojilkovic, and I. Atwater. Control of cytosolic free calcium in cultured human pancreatic β-cells occurs by external calcium-dependent and independent mechanisms. Endocrinology 134:771–1781, 1994.

    Article  Google Scholar 

  19. Stutzin, A., K. Stojilkovic, J. Catt, and E. G. Rojas. Characteristics of two types of calcium channels in rat pituitary gonadotrophs. Am. J. Physiol. 257:C865–C874, 1989.

    PubMed  CAS  Google Scholar 

  20. Ceña, V., K. W. Brocklehurst, H. B. Pollard, and E. Rojas. Pertussis toxin stimulation of catecholamine release from adrenal medullary chromaffin cells: Mechanism may be direct activation of L-type and G-type calcium channels. J. Membr. Biol. 122:23–31, 1991.

    Article  PubMed  Google Scholar 

  21. Colden-Stanfield, M., W. P. Schilling, L. D. Possani, and D. L. Kunze. Bradykinin-induced potassium current in cultured bovine aortic endothelial cells. J. Membr. Biol. 116:227–230, 1990.

    Article  PubMed  CAS  Google Scholar 

  22. Sturek, M., P. Smith, and L. Stehno-Bittel. In vitro models of vascular endothelial cell calcium regulation. In: Ion Channels of Vascular Smooth Muscle Cells and Endothelial Cells, edited by N. Sperelakis and H. Kuriyama. New York-Amsterdam-London-Tokyo: Elsevier, pp. 349–365, 1993.

    Google Scholar 

  23. Takeda, K., V. Schini, and H. Stoeckel. Voltage activated potassium, but not calcium currents in cultured bovine aortic endothelial cells. Pflug. Arch. 410:385–393, 1987.

    Article  CAS  Google Scholar 

  24. Vargas, F. F., P. Caviedes, and D. O. Grant. Electrophysiological characteristics of cultured human umbilical vein endothelial cells. Microvasc. Res. 47:153–165, 1994.

    Article  PubMed  CAS  Google Scholar 

  25. Bossu, J., L. A. Feltz, J. L. Rodeau, and F. Tanzi. Voltage dependent calcium transient currents in freshly dissociated capillary endothelial cells. FEBS Lett. 255:377–380, 1989.

    Article  PubMed  CAS  Google Scholar 

  26. Bossu, J., A. Elhamdani, and L. A. Feltz. Voltage-dependent calcium entry in confluent bovine capillary endothelial cells. FEBS Lett. 299:239–242, 1992.

    Article  PubMed  CAS  Google Scholar 

  27. Vinet, R. and F. F. Vargas. L-and T-type voltage-gated calcium channels in adrenal medulla microvascular endothelial cells. Submitted to Am. J. Physiol. 1997.

    Google Scholar 

  28. Vargas, F. F., R. Vinet, and S. Calvo. Voltage-gated Ca2+ channels in adrenal medulla endothelial cells and their loss during cell culture. FASEB. J. 8:A1061, 1994.

    Google Scholar 

  29. Delpiano, M. A. and B. M. Altura. Modulatory effect of extracellular Mg2+ ions on K+ and Ca2+ currents on capillary endothelial cells from rat brain. FEBS Lett. 394:335–339, 1996.

    Article  PubMed  CAS  Google Scholar 

  30. Delpiano, M. A. Ionic currents on endothelial cells of rat brain capillaries. In: Arterial Chemoreceptors: Cell to system, edited by R. G. O’Regan, P. Nolan, D. S. McQueen, and D. J. Paterson. New York: Plenum Press, pp. 183–186, 1994.

    Google Scholar 

  31. Vargas, F. F., M. E. O’Donnell, and F. E. Curry. Electrophysiology of Brain Microvascular Endothelial Cells. Microcirculation 4(1): 159, 1997.

    Google Scholar 

  32. Forsberg, E. J., G. Feuerstein, E. Shohami, and H. B. Pollard. Adenosine triphosphate stimulates inositol phospholipid metabolism and prostacyclin formation in adrenal medullary endothelial cells by means of P2-purinergic receptors. Proc. Natl. Acad. Sci. USA 84:5630–5634, 1987.

    Article  PubMed  CAS  Google Scholar 

  33. Gosink, E. C. and E. J. Forsberg. Effect of ATP and bradykinin on endothelial cell Ca2+ homeostasis and formation of cGMP and prostacyclin. Am. J. Physiol. 265:C1620–C1629, 1993.

    PubMed  CAS  Google Scholar 

  34. Bossu, J. L., A. Elhamdani, A. Feltz, F. Tanzi, D. Aunis, and D. Thierse. Voltage-gated Ca entry in isolated bovine capillary endothelial cells: evidence of a new type of BAY K 8644-sensitive channel. Pflugers Arch. 420:200–207, 1992.

    Article  PubMed  CAS  Google Scholar 

  35. Laskey, R. E., D. J. Adams, A. Johns, G. M. Rubanyi, and C. van Breemen. Membrane potential and Na+-K+ pump activity modulate resting and bradykinin-stimulated changes in cytosolic free calcium in cultured endothelial cells from bovine atria. J. Biol. Chem. 265(5):2613–2619, 1990.

    PubMed  CAS  Google Scholar 

  36. Luckhoff, A., and R. Busse. Alcium influx into endothelial cells and formation of endothelium-derived relaxing facror is controlled by the membrane potential. Pflugers Arch 416:305–311, 1990.

    Article  PubMed  CAS  Google Scholar 

  37. Furuya, S., C. Edwards, and R. Ornberg. Morphological behavior of cultured bovine adrenal medulla capillary endothelial cells. Tissue & Cell 22:615–628, 1990.

    Article  CAS  Google Scholar 

  38. Voyta, J. C., D. P. Via, C. E. Butterfield, and B. R. Zetter. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J. Cell Biol. 99:2034–2040, 1984.

    Article  PubMed  CAS  Google Scholar 

  39. Banerjee, D. K., R. L. Ornberg, M. B. H. Youdim, and H. B. Pollard. Endothelial cells from bovine adrenal medulla develop capillary-like growth patterns in culture. Proc. Natl. Acad. Sci. USA. 82:4702–4706, 1985.

    Article  PubMed  CAS  Google Scholar 

  40. Hamill, O. P., A. Marty, B. Neher, B. Sakman, and F. Sigworth. Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pfluegers Arch. 391:85–100, 1981.

    Article  CAS  Google Scholar 

  41. Olesen, S. P., D. E. Clapham, and P. P. Davies. Haemodynamic shear stress activates a K current in vascular endothelial cells. Nature 331:168–170, 1988.

    Article  PubMed  CAS  Google Scholar 

  42. Mehrke, G., U. Pohl, and J. Daut. Effects of vasoactive agonists on the membrane potential of cultured bovine aortic and guinea-pig coronary endothelium. J. Physiol. (London) 439:277–299, 1991.

    CAS  Google Scholar 

  43. Lansman, J. B., T. J. Hallam, and T. J. Rink. Single stretch-activated ion channels in vascular endothelial cells as mechano-transducers? Nature, Lond. 325:811–813, 1987.

    Article  CAS  Google Scholar 

  44. Takeda, K. and M. Keppler. Voltage-dependent and agonist-activated ionic currents in vascular endothelial cells. A Review. Blood Vessels 27:169–183, 1990.

    PubMed  CAS  Google Scholar 

  45. Lori, P., G. Varadi, and A. Schwartz. Molecular insights into regulation of L-type Ca channel function. NIPS 6:277–281, 1991.

    Google Scholar 

  46. Bertolino, M. and R. R. Llinás. The central role of voltage-activated and receptor-operated calcium channels in neuronal cells. Annu. Rev. Pharmacol. Toxicol. 32:399–421, 1992.

    Article  PubMed  CAS  Google Scholar 

  47. Stojilkovic, S., A. Torsello, I. Toshihiko, E. Rojas, and K. J. Catt. Calcium signaling and secretory responses in agonist-stimulated pituitary gonadotrophs. J. Steroid Biochem. Molec. Biol. 41(3–8):453–457, 1992.

    Article  PubMed  CAS  Google Scholar 

  48. Spedding, M. and R. Paoletti. Classification of calcium channels and the sites of action of drugs modifying channel function. Pharmacol. Rev. 44:363–376, 1992.

    PubMed  CAS  Google Scholar 

  49. Hess, P., B. Lansman, and R. W. Tsien. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature 311:538–544, 1984.

    Article  PubMed  CAS  Google Scholar 

  50. Tang, C. M., F. Presser, and M. Morad. Amiloride selectively blocks the low threshold (T) calcium channel. Science 240:213–215, 1988.

    Article  PubMed  CAS  Google Scholar 

  51. Colden-Stanfield, M., E. B. Cramer, and E. K. Gallin. Comparison of apical and basal surfaces of confluent endothelial cells: Patch-clamp and viral studies. J. Physiol. 263:C573–C583, 1992.

    CAS  Google Scholar 

  52. Stojilkovic, S., M. Kukuljan, M. Tomic, E. Rojas, and J. Catt. Mechanism of agonistinduced [Ca2+]i oscillations in pituitary gonadotrophs. J. Biol. Chem. 268:7713–7720, 1993.

    PubMed  CAS  Google Scholar 

  53. Laskey, R. L., D. J. Adams, M. Cannell, and C. van Breemen. Calcium-entry dependent oscillations of cytoplasmic calcium concentration in cultured endothelial cell monolayers. Proc. Natl. Acad. Sci. 89:1690–1694, 1992.

    Article  PubMed  CAS  Google Scholar 

  54. Neylon, C. B. and R. F. Irvine. Synchronized repetitive spikes in cytoplasmic calcium in confluent monolayers of human umbilical vein endothelial cells. FEBS Lett. 275:173–176, 1990.

    Article  PubMed  CAS  Google Scholar 

  55. Tracey, W. R. and M. J. Peach. Differential muscarinic receptor mRNA expression by freshly isolated and cultured bovine aortic endothelial cells. Circ. Res. 70:234–240, 1992.

    PubMed  CAS  Google Scholar 

  56. Stolz, D. B. and B. S. Jacobson. Macro-and microvascular endothelial cells in vitro: Maintenance of biochemical heterogeneity despite loss of ultrastructural characteristics. In Vitro Cell. Dev. Biol. 27A:168–182, 1991.

    Google Scholar 

  57. Oike, M., G. Droogmans, and B. Nilius. Mechanosensitive Ca2+ transients in endothelial cells from human umbilical vein. Proc. Natl. Acad. Sci. USA. 91:2940–2944, 1944.

    Article  Google Scholar 

  58. Ganong, W. F. Review of Medical Physiology. San Francisco, California: Lange Medical Publications, 1985, 295 pp.

    Google Scholar 

  59. Mizrachi, Y., P. I. Lelkes, R. L. Ornberg, G. Goping, and H. B. Pollard. Specific adhesion between pheochromocytoma (PC12) cells and adrenal medullary endothelial cells in co-culture. Cell Tissue Res. 256:365–372, 1989.

    Article  PubMed  CAS  Google Scholar 

  60. Lelkes, P. I. and B. R. Unsworth. Role of heterotypic interactions between endothelial cells and parenchymal cells in organ specific differentiation: A possible trigger for vasculogenesis. In: Angiogenesis in Health and Disease, edited by M. E. Mara-goudakis, P. Gullino, and P. I. Lelkes. New York: Plenum Press, pp. 27–43, 1992.

    Chapter  Google Scholar 

  61. Ornberg, R. L., G. A. J. Kuijpers, and R. D. Leapman.Electron probe microanalysis of the subcellular compartments of bovine adrenal chromaffin cells. J. Biol. Chem. 263(3): 1488–1493, 1988.

    PubMed  CAS  Google Scholar 

  62. Lelkes, P. I., V. G. Manolopoulos, D. Chick, and B. R. Unsworth. Endothelial cell heterogeneity and organ-specificity. In: Angiogenesis, Molecular Biology, Clinical Aspects, edited by M. E. Maragoudaku, P. Gullino, and P. I. Lelkes. New York: Plenum Press, pp. 1–15, 1994.

    Google Scholar 

  63. Cohen, R. A., J. T. Shepherd, and P. M. Vanhoutte. Inhibitory role of the endothelium in the response of isolated coronary arteries to platelets. Science 221:237–238, 1983.

    Article  Google Scholar 

  64. Ralevic, V. and G. Burnstock. Role of P2-purinoceptors in the cardiovascular system. Circulation 84(1): 1–14, 1991.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Vargas, F.F., Calvo, S., Vinet, R., Rojas, E. (1998). Interactions Between Bovine Adrenal Medulla Endothelial and Chromaffin Cells. In: Bassingthwaighte, J.B., Linehan, J.H., Goresky, C.A. (eds) Whole Organ Approaches to Cellular Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2184-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2184-5_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7449-0

  • Online ISBN: 978-1-4612-2184-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics