Skip to main content

The Transport of Small Molecules Across the Microvascular Barrier as a Measure of Permeability and Functioning Exchange Area in the Normal and Acutely Injured Lung

  • Chapter
Whole Organ Approaches to Cellular Metabolism
  • 92 Accesses

Abstract

Most studies of capillary exchange in the lung have been aimed at the issue of fluid balance and an examination of factors that influence pulmonary edema. The physiology of capillary fluid exchange was established in quantitative form by Pappenheimer et al. (1951), who did their original work in peripheral systemic capillaries. Chinard and Enns (1954) pioneered the application of trace injections of radioisotopes for the estimation of extravascular water in the lung and may be said to have originated the use of the indicator dilution method in the lung. Crone (1963) and Renkin (1959) were the first to develop methods for the computation of permeability-surface area (PS) in capillaries from multiple tracer studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, S.U., N.A. Pou, T.R. Harris, and R.J. Roselli. Indicator dilution methods using an amphipathic tracer can identify increased capillary permeability during air embolism. FASEB J. 7:A788, 1993.

    Google Scholar 

  • Ashbaugh, D.G., D.B. Bigelow, T.L. Petty, B.E. Levine. Acute respiratory distress in adults. Lancet 2:319–323, 1967.

    Article  PubMed  CAS  Google Scholar 

  • Audi, S.H., G.S. Krenz, J.H. Linehan, D.A. Rickaby, and C.A. Dawson. Pulmonary capillary transport function from flow-limited indicators. J. Appl. Physiol. 77:332–351, 1994.

    PubMed  CAS  Google Scholar 

  • Basset, G., G. Martel, F. Bouchonnet, J. Marsac, J. Sutton, J. Botter, and R. Capitini. Simultaneous detection of deuterium oxide and indocyanine green in flowing blood. J. Appl. Physiol. 50:1367–1371, 1981.

    PubMed  CAS  Google Scholar 

  • Bassingthwaighte, J.B. and C.A. Goresky. Modeling in the analysis of solute and water exchange in the microvasculature. In: Handbook of Physiology-The Cardiovascular System IV, edited by Renkin, E.M. and Michel, G.C. pp. 97–146, American Physiological Society, New York: Oxford, 1985.

    Google Scholar 

  • Bernard, G.R. and K.L. Brigham. Adult respiratory distress syndrome. Baylor Coll. Med. Cardiol. Series. 7(5):5–19, 1984.

    Google Scholar 

  • Bosan, S. and T.R. Harris. A visualization-based analysis method for multiparameter models of capillary-tissue exchange. Ann. Biomed. Engrg. 24:124–138, 1996.

    Article  CAS  Google Scholar 

  • Bradley, J.D., R.J. Roselli, R.E. Parker, and T.R. Harris. Effects of endotoxemia on the sheep lung microvascular membrane: A two-pore theory. J. Appl. Physiol. 64:2675–2683, 1988.

    PubMed  CAS  Google Scholar 

  • Brigham, K.L., J.D. Snell, T.R. Harris, S. Marshall, J. Haynes, R.E. Bowers, and J. Perry. Indicator dilution lung water and vascular permeability in humans: Effects of pulmonary vascular pressure. Circ. Res. 44:523–530, 1979.

    PubMed  CAS  Google Scholar 

  • Brigham, K.L., K. Kariman, T.R. Harris, J.R. Snapper, and S.L. Young. Correlation of oxygenation with vascular permeability-surface area but not with lung water in humans with acute respiratory failure and pulmonary edema. J. Clin. Invest. 72:339–349, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Byrne, K. and H.J. Sugerman. Experimental and clinical assessment of lung injury by measurement of extravascular lung water and transcapillary protein flux in ARDS: A review of current techniques. J. Surg. Res. 44:185–203, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Canonico, A.E. and K.L. Brigham. Biology of acute injury. In: The Lung: Scientific Foundations, edited by R.G. Crystal, J.B. West, Barnes, P.J., Cherniack, N.S., Weibel, E.R. pp. 2475–2498. Philadelphia: Lippincott-Raven, 1997.

    Google Scholar 

  • Caruthers, S.D., T.R. Harris, K.A. Overholser, N.A. Pou, and R.E. Parker. The effects of flow heterogeneity on the measurement of capillary exchange in the lung. J. Appl. Physiol. 79:1449–1460, 1995.

    PubMed  CAS  Google Scholar 

  • Chinard, F.P. and T. Enns. Transcapillary pulmonary exchange of water in the dog. Am. J. Physiol. 178:197–202, 1954.

    PubMed  CAS  Google Scholar 

  • Cope, D.K., F. Grimbert, J.M. Downey, and A.E. Taylor. Pulmonary capillary pressure: A review. Crit. Care Med. 20:1043–1056, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Crone, C. The permeability of capillaries in various organs determined by use of the “indicator diffusion” method. Acta. Physiol. Scand. 58:292–305, 1963.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, C.A., J.H. Linehan, D.A. Rickaby, and G.S. Krenz. Effect of vasoconstriction on longitudinal distribution of pulmonary vascular pressure and volume. J. Appl. Physiol. 70:1607–1616, 1991.

    PubMed  CAS  Google Scholar 

  • Dupuis, J., C.A. Goresky, C. Juneau, A. Calderone, J.L. Rouleau, C.P. Rose, and S. Goresky. Use of norepinephrine uptake to measure lung capillary recruitment with exercise. J. Appl. Physiol. 68:100–113, 1990.

    Google Scholar 

  • Gillis, C.N. and J.D. Catravas. Altered removal of vasoactive substances in the injured lung: detection of lung microvascular injury. Ann. N.Y. Acad. Sci. 384:458–475, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Goresky, C.A., R.F.P. Cronin, and B.E. Wangel. Indicator dilution measurements of extra-vascular water in the lung. J. Clin. Invest. 48:487–501, 1969.

    Article  PubMed  CAS  Google Scholar 

  • Gorin, A.B., W.J. Weidner, R. Demling, and N.C. Staub. Noninvasive measurement of pulmonary transvascular protein flux in sheep. J. Appl. Physiol. 45:225–233, 1978.

    PubMed  CAS  Google Scholar 

  • Hanson, L., J.D. Emhardt, J.P. Bartek, L.P. Latham, L.L. Checkly, R.L. Capen, and W.W. Wagner. Site of recruitment in the pulmonary microcirculation. J. Appl. Physiol. 66:2079–2083, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Harris, T.R., R.D. Rowlett, and K.L. Brigham. The computation of pulmonary capillary permeability from multiple-indicator data: The effects of increased capillary pressure and alloxan treatment. Microvasc. Res. 12:177–196, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Harris, T.R., K.L. Brigham, and R.D. Rowlett. Pressure, serotonin and histamine effects on lung multiple-indicator curves in sheep. J. Appl. Physiol. 44:245–253, 1978.

    PubMed  CAS  Google Scholar 

  • Harris, T.R. and K.L. Brigham. The exchange of small molecules as a measure of normal and abnormal lung microvascular function. Ann. N.Y. Acad. Sci. 384:417–434, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Harris, T.R., G.R. Bernard, R.J. Roselli, C.R. Maurer, and N.A. Pou. Extravascular lung water by infrared and other measures. Proc. Ann. Conf. Engr. Med. Biol. 27:77, 1985.

    Google Scholar 

  • Harris, T.R., R.J. Roselli, C.R. Maurer, R.E. Parker, and N.A. Pou. Comparison of labelled propanediol and urea as markers of lung vascular injury. J. Appl. Physiol. 62:1852–1859, 1987.

    PubMed  CAS  Google Scholar 

  • Harris, T.R. and R.J. Roselli. The exchange of small molecules in the normal and abnormal lung circulatory bed. In: Respiration Physiology: A Quantitative Approach, edited by Chang, H.K. and Paiva, M. New York: Dekker, pp. 737–791, 1989.

    Google Scholar 

  • Harris, T.R., G.R. Bernard, K.L. Brigham, S.B. Higgins, J.E. Rinaldo, H.S. Borovetz, W.J. Sibbald, K. Kariman, and C.L. Sprung. Lung microvascular transport properties measured by multiple indicator dilution methods in ARDS patients: A comparison between patients reversing respiratory failure and those failing to reverse. Am. Rev. Resp. Dis. 141:272–280, 1990.

    PubMed  CAS  Google Scholar 

  • Harris, T.R., S.U. Adams, and N.A. Pou. Phorbal myristate acetate (PMA) infusion alters the recruitment of capillaries by flow in isolated perfused dog lungs. FASEB J. 8:A917, 1994.

    Google Scholar 

  • Haselton, F.R., R.E. Parker, R.J. Roselli, and T.R. Harris. Lung multiple tracer analysis with an effective diffusivity model of capillary-tissue exchange. J. Appl. Physiol. 57:98–109, 1984a.

    PubMed  CAS  Google Scholar 

  • Haselton, F.R., R.J. Roselli, R.E. Parker, and T.R. Harris. An effective diffusivity model of pulmonary capillary exchange: General theory, limiting cases and sensitivity analysis. Math. Biosci. 70:237–263, 1984b.

    Article  Google Scholar 

  • King, R.B., G.M. Raymond, and J.B. Bassingthwaighte. Modeling blood flow heterogeneity. Ann. Biomed. Engrg. 24:352–372, 1996.

    Article  CAS  Google Scholar 

  • Konig, M.F., J.M. Lucocq, and E.R. Weibel. Demonstration of pulmonary vascular perfusion by electron and light microscopy. J. Appl. Physiol. 75(4): 1877–1883, 1993.

    PubMed  CAS  Google Scholar 

  • Kuikka, J., M. Levin, and J.B. Bassingthwaighte. Multiple tracer dilution estimates of D-and 2-deoxy-D-glucose uptake by the heart. Am. J. Physiol. 250:H29–H42, 1986.

    PubMed  CAS  Google Scholar 

  • Leksell, L.G., M.S. Schreiner, A. Sjlvesto, and G.R. Neufeld. Commercial double indicator-dilution densitometer using heavy water: evaluation of oleic-acid pulmonary edema. J. Clin. Monit. 6:99–106, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, F.R., V.B. Elings, S.L. Hill, and J.M. Christensen. The measurement of extravascular lung water by thermal-green dye indicator dilution. Ann. N.Y. Acad. Sci. 384:394–410, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Mitzner, W. and H.K. Chang. Hemodynamics of the pulmonary circulation. In: Respiration Physiology: A Quantitative Approach, edited by Chang, H.K. and Paiva, M. New York: Dekker, pp. 561–631, 1989.

    Google Scholar 

  • Nelin, L.D., D.L. Roerig, D.A. Rickaby, J.H. Linehan, and C.A. Dawson. Influence of flow on pulmonary vascular surface area inferred from blue dextran efflux data. J. Appl. Physiol. 72(3):874–880, 1992.

    PubMed  CAS  Google Scholar 

  • Olson, L.E., A. Pou, and T.R. Harris. Surface-area independent assessment of lung microvascular permeability using an amphipathic tracer. J. Appl. Physiol. 70:1085–1096, 1991.

    PubMed  CAS  Google Scholar 

  • Olson, L.E., D.J. Staton, M. Young, R.L. Galloway, and T.R. Harris. Sulhemoglobinated erythrocytes as an optical intravascular tracer in the lung. Ann. Biomed. Engrg. 22:323–331, 1994.

    Google Scholar 

  • Olson, L.E., T.R. Hams, A. Pou, M.N. Syed-Ahmed, and R.L. Galloway. An optical multiple indicator dilution technique to measure lung permeability surface area: Calibration and baseline measurement. IEEE Trans. BME 42:451–463, 1995.

    Article  Google Scholar 

  • Overholser, K.A., M.J. Bhatte, and M.H. Laughlin. Modeling the effect of flow heterogeneity on coronary permeability-surface area. J. Appl. Physiol. 71:758–769, 1991.

    PubMed  CAS  Google Scholar 

  • Overholser, K.A., N.A. Lomangino, R.E. Parker, N.A. Pou, and T.R. Harris. Pulmonary vascular resistance distribution and the recruitment of microvascular area. J. Appl. Physiol. 77:845–855, 1994.

    PubMed  CAS  Google Scholar 

  • Pappenheimer, J.R., E.M. Renkin, and L.M. Borrero. Filtration, diffusion, and molecular sieving through peripheral capillary membranes: A contribution to the pore theory of capillary permeability. Am. J. Physiol. 167:13–46, 1951.

    PubMed  CAS  Google Scholar 

  • Parker, R.E., R.J. Roselli, F.R. Haselton, and T.R. Harris. Effect of perfusate hematocrit on urea permeability surface area in isolated dog lungs. J. Appl. Physiol. 60:1293–1299, 1986.

    PubMed  CAS  Google Scholar 

  • Renkin, E.M. Transport of potassium-42 from the blood to tissue in isolated mammalian skeletal muscles. Am. J. Physiol. 197:1209–1210, 1959.

    Google Scholar 

  • Rickaby, D.A., J.H. Linehan, T.A. Bronikowski, and C.A. Dawson. Kinetics of serotonin uptake in the dog lung. J. Appl. Physiol. 51:405–414, 1981.

    PubMed  CAS  Google Scholar 

  • Rickaby, D.A., C.A. Dawson, J.H. Linehan, and T.A. Bronikowski. Alveolar vessel behavior in the zone 2 lung inferred from indicator-dilution data. J. Appl. Physiol. 63(2):778–784, 1987.

    PubMed  CAS  Google Scholar 

  • Rinaldo, J.E., H.S. Borovetz, M.C. Mancini, R.L. Hardesty, and B.P. Griffith. Assessment of lung injury in the Adult Respiratory Distress Syndrome using multiple indicator dilution curves. Am. Rev. Resp. Dis. 133:1006–1010, 1986.

    PubMed  CAS  Google Scholar 

  • Rose, C.P. and C.A. Goresky.. Vasomotor control of capillary transit-time heterogeneity in the canine coronary circulation. Circ. Res. 39:541–544, 1976.

    PubMed  CAS  Google Scholar 

  • Roselli, R.J. and T.R. Harris. Lung fluid and macromolecular transport. In: Respiration Physiology: A Quantitative Approach, edited by Chang, H.K. and Paiva, M. New York: Dekker, pp. 633–735, 1989.

    Google Scholar 

  • Roselli, R.J. and W.R. Riddle. Analysis of non-invasive microvascular macromolecular transport measurements in the lung. J. Appl. Physiol. 67:2343–2350, 1989.

    PubMed  CAS  Google Scholar 

  • Rowlett, R.D. and T.R. Harris. Comparative study of organ models and numerical methods for the evaluation of capillary permeability from multiple-indicator data. Mathemat. Biosci. 29:273–298, 1976.

    Article  Google Scholar 

  • Sangren, W.C. and C.W. Sheppard. Mathematical derivation of the exchange of a labelled substance between a liquid flowing in a vessel and an external compartment. Bull. Math. Biophys. 15:387–394, 1953.

    Article  CAS  Google Scholar 

  • Schuster, D.P. Positron emission tomography: Theory, and its application to the study of lung disease (State-of-the-Art). Am. Rev. Resp. Dis. 139:818–840, 1989.

    PubMed  CAS  Google Scholar 

  • Shibamoto, T., J.C. Parker, A.E. Taylor, and M.I. Townsley. Derecruitment of filtration surface area in paraquat-injured isolated dog lungs. J. Appl. Physiol. 68:1581–1589, 1990.

    PubMed  CAS  Google Scholar 

  • Syrota, A., M. Girauld, J.-J. Pocidalo, and D.L. Yudilevich. Endothelial uptake of amino acids, sugars, lipids, and prostaglandins in rat lung. Am. J. Physiol. 243:C20–C26, 1982.

    PubMed  CAS  Google Scholar 

  • Taylor, A.E. and J.C. Parker. Pulmonary interstitial spaces and lymphatics. In: Handbook of Physiology—The Respiratory System I, Volume 4, edited by A.P. Fishman, and A.B. Fisher. Bethesda, MD: American Physiology Association, pp. 167–229, 1985.

    Google Scholar 

  • Toivonen, H.J. and J.D. Catravas. Effects of blood flow on lung ACE kinetics: Evidence for microvascular recruitment. J. Appl. Physiol. 71(6):2244–2254, 1991.

    PubMed  CAS  Google Scholar 

  • West, J.B., C. Dollery, and A. Naimark. Distribution of blood flow in isolated lung: Relation to vascular and alveolar pressure. J. Appl. Physiol. 19:713–724, 1964.

    PubMed  CAS  Google Scholar 

  • West, J.B. Ventilation/Blood Flow and Gas Exchange. Oxford: Blackwell, 1972.

    Google Scholar 

  • Zelter, M., D. Lipavsky, J.M. Hoeffel, and J.F. Murray. Effect of lung injuries on 14C-urea permeability surface area product in dogs. J. Appl. Physiol. 56:1512–1520, 1984.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Harris, T.R. (1998). The Transport of Small Molecules Across the Microvascular Barrier as a Measure of Permeability and Functioning Exchange Area in the Normal and Acutely Injured Lung. In: Bassingthwaighte, J.B., Linehan, J.H., Goresky, C.A. (eds) Whole Organ Approaches to Cellular Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2184-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2184-5_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7449-0

  • Online ISBN: 978-1-4612-2184-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics