Skip to main content

Pulmonary Perfusion and the Exchange of Water and Acid in the Lungs

  • Chapter
  • 92 Accesses

Abstract

Studies of transport across the membranes that separate the pulmonary vasculature from the alveoli have been associated with theoretical and practical problems which have challenged the ingenuity of investigators for decades. It is difficult to distinguish between alveolar and airway transport in the intact lung, or to define the relative roles of different cells that line the alveoli. Monolayers of type II pneumocytes have been used to characterize solute transport in the distal lungs, but uncertainties persist regarding the identity and properties of these cells (Mason et al., 1982; Crandall et al., 1982). The morphology of isolated alveolar cells changes in culture from that of type II pneumocytes to flatter cells, which appear to be similar to type I pneumocytes. Since the former cover less than 5% of the surface of the lungs, they may not be representative of the normal barrier that separates the gaseous phase from the blood flowing through the lungs. Whether the cells that have been in culture for longer intervals have transport properties similar to those of the type I pneumocytes will remain uncertain unless the function of these cells can be compared with that of cells in the intact lung.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agre, P., G.M. Preston, B.L. Smith, J.S. Jung, S. Raina, C. Monon, W.B. Guggino, and S. Nielsen. Aquaporin CHIP: The archetypal molecular water channel. Am. J. Physiol. 265:F463–F476, 1993.

    PubMed  CAS  Google Scholar 

  • Bedrossian, C.W., S.D. Greenberg, D.B. Singer, and J.J. Hansen. The lung in cystic fibrosis. A quantitative study including prevalence of pathologic findings among different age groups. Human Pathology 7:195–204, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Bendig, D.W., D.K. Jeilheimer, M.L. Wagner, G.D. Ferry, and G.M. Harrisson. Complications of gastroesophageal reflux in patients with cystic fibrosis. J. Pediatr. 100:536–540, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Berg, M.M., K.J. Kim, R.L. Lubman, and E.D. Crandall. Hydrophilic solute transport across rat alveolar epithelium. J. Appl. Physiol. 66:2320–2327, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Bingham, J.B., K.A. McKusick, H.W. Strauss, C.A. Boucher, and G.M. Pohost. Influence of coronary artery disease on pulmonary uptake of thallium-201. Am. J. Cardiol. 46:821–826, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Breakey, A.S., C.T. Dotter, and I. Steinberg. Pulmonary complications of cardiospasm. N. Eng. J. Med. 245:441–447, 1951.

    Article  CAS  Google Scholar 

  • Brown, C.M., C.F. Snowdon, B. Slee, L.N. Sandle, and W.D.W. Rees. Measurement of bicarbonate output from the intact human oesophagus. Gut 34:872–880, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Carter, E.P., M.A. Matthay, J. Farinas, and A.S. Verkman. Transalveolar osmotic and diffusional water permeability in intact mouse lung measured by a novel surface fluorescence method. J. Gen. Physiol. 108:133–142, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Chinard, F.P., W.O. Cua, and V. Bower. Response of lung microvasculature to sulfhydryl reagents. FASEB J. 8:A1036, 1994.

    Google Scholar 

  • Chinard, F.P., T. Enns, and M.F. Nolan. The permeability characteristics of the alveolar capillary barrier. Trans. Assoc. Am. Physicians 75:253–261, 1962.

    PubMed  CAS  Google Scholar 

  • Chinard, F.P., G.H. Vosburgh, and T. Enns. Transcapillary exchange of water and of other substances in certain organs of the dog. Am. J. Physiol. 183:221–234, 1955.

    PubMed  CAS  Google Scholar 

  • Clarke, L.L., B.R. Grub, J.R. Yankaskas, C.U. Cotton, A. McKenzie, and R.C. Boucher. Relationship of a non-cystic fibrosis transmembrane conductance regulator-mediated chloride conductance to organ-level disease in Cftr(-/-) mice. Proc. Natl. Acad. Sci. USA 91:479–483, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Colin, G. ( 1873) De l’absorption dans les voies aeriennes. Physiol. Compares des Animaux. Paris: Bailliere et Fils.

    Google Scholar 

  • Cox, K.L., J.N. Isenberg, and M.E. Ament. Gastric acid hypersecretion in cystic fibrosis. J. Pediatr. Gastroenterol. Nutr. 1:559–565, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Cua, W.O., V. Bower, C. Tice, and T.P. Chinard. Pulmonary vascular extraction and distribution of antipyrine with alveolar flooding. Am. J. Physiol. 269 (Heart, Circ Physiol. 38):H1811–H1819, 1995.

    PubMed  CAS  Google Scholar 

  • Cucchiara, S., F. Santamaria, M.R. Andreotti, R. Minella, P. Ercolini, V. Oggero, and G de Ritis. Mechanisms of gastro-oesophageal reflux in cystic fibrosis. Arch. Dis. in Childhood 66:617–622, 1991.

    Article  CAS  Google Scholar 

  • Dupuis, J., C.A. Goresky, C. Juneau, A. Calderone, J.L. Rouleau, C.P. Rose, and C. Goresky. Use of norepinephrine uptake to measure lung capillary recruitment with exercise. J. Appl. Physiol. 68:700–713, 1990.

    PubMed  CAS  Google Scholar 

  • Effros, R.M. Osmotic extraction of hypotonic fluid from the lungs. J. Clin. Invest. 54:935–947, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Effros, R.M. and C. Darin. Efficient anion transport is essential for prompt neutralization of inspired acid: A possible model of lung injury in cystic fibrosis. Am. J. Resp. Crit. Care Med. p. A741, 1995.

    Google Scholar 

  • Effros, R.M. and R.S.Y. Chang. Distribution of water and proteins in the lungs in pulmonary edema. In: Pulmonary Edema, edited by A. R Fishman and E.M. Renkin. Bethesda, MD: American Physiological Society, pp. 137–144, 1979.

    Google Scholar 

  • Effros, R.M., G.R. Mason, and P. Silverman. Role of perfusion and diffusion in 14CO2 exchange in the rabbit lung. J. Appl. Physiol. 51:1136–1144, 1981.

    PubMed  CAS  Google Scholar 

  • Effros, R.M., G.R. Mason, E. Reid, L. Graham, and P. Silverman. Diffusion of labeled water and lipophilic solutes in the lung. Microvasc. Res. 29:45–55, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Effros, R.M., G.R. Mason, K. Sietsema, J. Hukkanen, and P. Silverman. Pulmonary epithelial sieving of small solutes in rat lungs. J. Appl. Physiol. 65:640–648, 1988.

    PubMed  CAS  Google Scholar 

  • Effros, R.M., et al. Continuous measurements of changes in pulmonary capillary surface area with 201T1 infusions. J. Appl. Physiol. 77:2093–2103, 1994.

    PubMed  CAS  Google Scholar 

  • Effros, R.M., C. Darin, E.R. Jacobs, R.A. Rogers, G. Krenz, and E.E. Schneeberger. Water transport and the distribution of aquaporin-1 in pulmonary air spaces. J. Appl. Physiol. 83:1002–1016, 1997.

    PubMed  CAS  Google Scholar 

  • Farber, S. Some organic digestive diseases in early life. J. Mich. Med. Soc. 44:587–594, 1945.

    Google Scholar 

  • Fiegelson, J., F. Girault, and Y. Pecaue. Short communication: Gastro-oesophageal reflux and esophagitis in cystic fibrosis. Acta Paediatr. Scand. 76:989–990, 1987.

    Article  Google Scholar 

  • Flemström, G. Gastric and duodenal mucosal secretion of bicarbonate. In: Physiology of the Gastrointestinal Tract, 3rd edition, edited by L.R. Johnson. New York: Raven Press, pp. 1285–1309, 1984.

    Google Scholar 

  • Folkesson, H., M.A. Matthay, H. Hasegawa, F. Kheradmand, and A.S. Verkman. Transcellular water transport in lung alveolar epithelium through mercurial-sensitive water channels. Proc. Natl. Acad. Sci. 91:4970–4974, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Garrick, R.A., U.S. Ryan, V. Bower, W.O. Cua, and F.P. Chinard. The diffusional transport of water and small solutes in isolated endothelial cells and erythrocytes. Biochim. Biophys. Acta 1148(1):108–116, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Gill, J.B., T.D. Ruddy, J.B. Newell, D.M. Finkelstein, H.W. Strauss, and A. Boucher. Prognostic importance of thallium uptake by the lungs during exercise in coronary artery disease. N. Engl. J. Med. 317:1485–1489, 1987.

    Article  Google Scholar 

  • Goodman, B.E. and E.D. Crandall. Dome formation in primary cultured monolayers of alveolar epithelial cells. Am. J. Physiol. 243:C96–C100, 1982.

    PubMed  CAS  Google Scholar 

  • Hasegawa, H., S.C. Lian, W.E. Finkbeiner, and A.S. Verkman. Extrarenal tissue distribution of CHIP28 water channels by in situ hybridization and antibody staining. Am. J. Physiol. 266:C893–C903, 1994a.

    PubMed  CAS  Google Scholar 

  • Hasegawa, H., T. Ma, W. Skach, M.A. Matthay, and A.S. Verkman. Molecular cloning of a mercurial-insensitive water channel expressed in selected water-transporting tissues. J. Biol. Chem. 269:5497–5500, 1994b

    PubMed  CAS  Google Scholar 

  • Helm, J.F., W.J. Dodds, and W.J. Hogan. Salivary response to esophageal acid in normal subjects and patients with reflux esophagitis. Gastroenterology 92:1393–1397, 1987.

    Google Scholar 

  • Kennedy, H.H. “Silent” gastroesophageal reflux: An important but little known cause of pulmonary complications. Dis. of the Chest 42:42–45, 1962.

    Article  Google Scholar 

  • King, L.S. and P. Agre. Pathophysiology of the aquaporin water channels. [Review] Ann. Rev. Physiol. 58:619–648, 1996.

    Article  CAS  Google Scholar 

  • King, L.S., S. Nielsen, and P. Agre. Aquaporin-1 water channel protein in lung: Ontogeny, steroid-induced expression, and distribution in rat. J. Clin. Invest. 97:2183–2191, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Krauthammer, M.J., J. Rinderknecht, K. Taplin, K. Wasserman, J.M. Uszler, and R.M. Effros. Enhanced diffusion of small solutes across the pulmonary epithelium in pulmonary fibrosis. Chest 72:403, 1977.

    Google Scholar 

  • Krenz, G. and R.M. Effros. Mathematical models of clearance of airway water. FASEB J. 9:A570, 1995.

    Google Scholar 

  • Lea, E.J.A. Permeation through long narrow pores. J. Theor. Biol. 5:102–107, 1963.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M.D., K.Y. Bhakta, S. Raina, R. Yonescu, C.A. Griffin, N.G. Copeland, D.J. Gilbert, N.A. Jenkins, G.M. Preston, and P. Agre. The human Aquaporin-5 gene. Molecular characterization and chromosomal localization. J. Biol. Chem. 271(15):8599–8604, 1996.

    Article  PubMed  CAS  Google Scholar 

  • Lightfoot, E.N., J.B. Bassinghtwaighte, and E.F. Grabowski. Hydrodynamic models for diffusion in microporous membranes. Ann. Biomed. Engin. 4:78–90, 1976.

    Article  CAS  Google Scholar 

  • Malfroot, A. and I. Dab. New insights on gastro-oesophageal reflux in cystic fibrosis by longitudinal follow up. Dis. in Childhood, 66:617–622, 1991.

    Article  Google Scholar 

  • Mason, R.J., M.C. Williams, J.H. Widdicombe, M.J. Sanders, D.S. Misfeldt, and L.C. Berry, Jr. Transepithelial transport by pulmonary alveolar type II cells in primary culture. Proc. Natl. Acad. Sci. USA 79:6033–6037, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Moura, T.R., R.I. Macey, D.Y. Chien, D. Daran, and H. Santos. Thermodynamics of all-or-nothing channels closure in red cells. J. Membr. Biol. 81:105–111, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Paganelli, C.V. and A.K. Solomon. The rate of exchange of tritiated water across the human red cell membrane. J. Gen. Physiol. 41:259–277, 1957.

    Article  PubMed  CAS  Google Scholar 

  • Pappenheimer, J.R., E.M. Renkin, and L.M. Borrero. Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Am. J. Physiol. 167:13–46, 1951.

    PubMed  CAS  Google Scholar 

  • Perl, W., P. Chowdhury, and P.P. Chinard. Reflection coefficients of dog lung endothelium to small hydrophilic solutes. Am. J. Physiol. 228:797–809, 1975.

    PubMed  CAS  Google Scholar 

  • Poulsen, J.H., H. Fischer, B. Illek, and T.E. Machen. Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc. Natl. Acad. Sci. USA 91:5340–5344, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Preston, G.M., B.L. Smith, M.L. Zeidel, J.J. Moulds, and P. Agre. Mutations in aquaporin-1 in phenothypically normal humans without functional CHIP water channels. Science 265:1585–1587, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Raina, S., G.M. Preston, W.B. Guggino, and P. Agre. Molecular cloning and characterization of an aquaporin cDNA from salivary, lacrimal, and respiratory tissues. J. Biol. Chem. 270:1908–1912, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Renkin, E.M. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am. J. Physiol. 197:1205–1210, 1959a.

    PubMed  CAS  Google Scholar 

  • Renkin, E.M. Exchangeability of tissue potassium in skeletal muscle. Am. J. Physiol. 197:1211–1215, 1959b.

    PubMed  CAS  Google Scholar 

  • Renkin, E.M. and S. Rosell. Effects of different types of vasodilator mechanisms on vascular tonus and on transcapillary exchange of diffusible material in skeletal muscle. Acta. Physiol. Scand. 54:241–251, 1962.

    Article  PubMed  CAS  Google Scholar 

  • Rinderknecht, J., L. Shapiro, M. Krauthammer, G. Taplin, K. Wasserman, J.M. Uszler, and R.M. Effros. Accelerated clearance of small solutes from the lungs in interstitial lung disease. Am. Rev. Resp. Dis. 121:105–117, 1980.

    PubMed  CAS  Google Scholar 

  • Schnitzer, J. and P. Oh. Aquaporin-1 in plasma membrane and caveolae provides mercury-sensitive water channels across lung endothelium. Am. J. Physiol. 270 (Heart Circ. Physiol.):H416–H422, 1996.

    PubMed  CAS  Google Scholar 

  • Sidel, V.W. and A.K. Solomon. Entrance of water into human red cells under an osmotic pressure gradient. J. Gen. Physiol. 41:243–257, 1957.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J.J. and M.J. Welsh. cAMP stimulates bicarbonate secretion across normal, but not cystic fibrosis airway epithelia. J. Clin. Invest 89:1148–1153, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, A.E. and K.A. Gaar. Estimation of equivalent pore radii of pulmonary capillary and alveolar membranes. Am. J. Physiol. 218:1133–1140, 1970.

    PubMed  CAS  Google Scholar 

  • Titjen, P.A., R.J. Kaner, and C.E. Quinn.. Aspiration emergencies. Clin. Chest Med. 15:117–135, 1994.

    Google Scholar 

  • Van Hoek, A.N., M.L. Horn, L.H. Luthjens, M.D. DeJong, J.A. Dempster, and C.H. van Os. Functional unit of 30 kDa for proximal tubule water channels as revealed by radiation inactivation. J. Biol. Chem. 226:1633–16635, 1991.

    Google Scholar 

  • Van Lieburg, A.F., M.A. Verdijk, V.V. Knoers, A.J. van Essen, W. Proesmans, R. Mall-mann, L.A. Monnens, B.A. van Oost, C.H. van Os, and P.M. Deen. Patients with autosomal nephrogenic diabetes insipidus homozygous for mutations in the aquaporin 2 water-channel gene. Am. J. Human Genetics 55:648–652, 1994.

    Google Scholar 

  • Van Hoek, A.N., L.H. Luthjens, M.L. Horn, C.H. Van Os, and J.A. Dempster. A 30kDa functional size for the erythrocyte water channel determined in situ by radiation inactivation. Biochem. Biophys. Res. Commun. 184:1331–1338, 1992.

    Article  PubMed  Google Scholar 

  • Verkman, A. Water Channels. Austin, TX: R.G. Landes Co, 1993.

    Google Scholar 

  • Wangensteen, O.D., H. Bachofen, and E.R. Weibel. Lung tissue volume changes induced by hypertonic NaCl: Morphometric evaluation. J. Appl. Physiol. 51:1443–1450, 1981.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Effros, R.M., Biller, J., Jacobs, E., Krenz, G.S. (1998). Pulmonary Perfusion and the Exchange of Water and Acid in the Lungs. In: Bassingthwaighte, J.B., Linehan, J.H., Goresky, C.A. (eds) Whole Organ Approaches to Cellular Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2184-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2184-5_20

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7449-0

  • Online ISBN: 978-1-4612-2184-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics