Skip to main content

Pulmonary Endothelial Surface Reductase Kinetics

  • Chapter
Whole Organ Approaches to Cellular Metabolism

Abstract

The role of the endothelium as a metabolically active organ having a number of regulatory functions is well established. The in vivo evaluation of these functions tends to be a difficult problem, and much of the research in this area is being carried out using simpler systems such as cultured endothelial cells. The results from such studies provide increased motivation for understanding how the various endothelial functions operate in vivo. The multiple-indicator dilution method (MID) is an approach for studying in vivo endothelial cell biology. The lungs are unique with regard to in vivo application of the MID for the study of capillary permeation, cellular transport, and reaction kinetics in that access to a single inlet (e.g., a systemic vein or the pulmonary artery) and single outlet (e.g., a peripheral systemic artery) is more readily available than in any other organ, and the MID has been applied to the in vivo study of these functions of the pulmonary endothelium (13–16, 18, 21, 22). The MID method is suited for studying those processes that occur rapidly enough that their effects can be observed in the time frame of a single pass through the lungs. In general, capillary blood flow tends to be so high in comparison to the rates of endothelial cell utilization of typical substrates for intermediary metabolism that the MID is not applicable to such substrates. However, the pulmonary endothelium also carries out a number of metabolic functions that appear to be directed at modulating blood concentrations of certain substances rather than at the metabolic requirements of the endothelial cells themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auclair, C., E. Voisin, and H. Banoun. Superoxide dismutase-inhibitable NBT and cytochrome C reduction as probe of superoxide anion production: A reapraisal. In: Oxy Radicals and Their Scavenger Systems, Molecular Aspects, edited by G. Cohen and R.A. Greenwald. New York: Elsevier Science Publishing Co., Inc., Vol. I, 1983, pp. 312–315.

    Google Scholar 

  2. Audi, S.H., C.A. Dawson, J.H. Linehan, G.S. Krenz, S.B. Ahlf, and D.L. Roerig. An interpretation of 14C-urea and 14C-primidone extraction in isolated rabbit lungs. Ann Biomed. Eng. 24:337–351, 1996.

    Article  PubMed  CAS  Google Scholar 

  3. Audi, S.H., J.H. Linehan, G.S. Krenz, C.A. Dawson, S.B. Ahlf, and D.L. Roerig. Estimation of the pulmonary capillary transport function in isolated rabbit lungs. J. Appl. Physiol. 78(3): 1004–1014, 1995.

    PubMed  CAS  Google Scholar 

  4. Baggiolini, M., F. Boulay, J.A. Badwey, and J.T. Curnutte. Activation of neutrophil leukocytes: Chemoattractant receptors and respiratory burst. FASEB J. 7:1004–1010, 1993.

    PubMed  CAS  Google Scholar 

  5. Bongard, R.D., G.S. Krenz, J.H. Linehan, D.L. Roerig, M.P. Merker, J.L. Widell, and C.A. Dawson. Reduction and accumulation of methylene blue by the lung. J. Appl. Physiol. 77:1480–1491, 1994.

    PubMed  CAS  Google Scholar 

  6. Bongard, R.D., M.P. Merker, R. Shundo, Y. Okamoto, D.L. Roerig, J.H. Linehan, and C.A. Dawson. Reduction of thiazine dyes by bovine pulmonary arterial endothelial cells in culture. Am. J. Physiol. 269 (Lung Cell. Mol. Physiol. 13): L78–L84, 1995.

    PubMed  CAS  Google Scholar 

  7. Britigan, B.E., T.L. Roeder, and D.M. Shasby. Insight into the nature and site of oxygen-centered free radical generation by endothelial cell monolayers using a novel spin trapping technique. Blood 79:699–707, 1992.

    PubMed  CAS  Google Scholar 

  8. Crane, F.L., H. Low, and M.G. Clark. Plasma membrane redox enzymes. In: The Enzymes of Biological Membranes, Second Edition, edited by A.N. Martonosi. New York, London: Plenum Press, Vol. 4, 1985, pp. 465–510.

    Google Scholar 

  9. Crane, F.L., I.L. Sun, R. Barr, and H. Low. Electron and proton transport across the plasma membrane. J. Bioenerget. Biomem. 23:773–803, 1991.

    Article  CAS  Google Scholar 

  10. Crane, F.L., I.L. Sun, M.G. Clark, C. Grebing, and H. Low. Transplasma-membrane redox systems in growth and development. Biochim. Biophys. Acta. 811:233–264, 1985.

    PubMed  CAS  Google Scholar 

  11. Crone, C. The permeability of capillaries in various organs as determined by the use of the indicator diffusion method. Acta Physiol. Scand. 58:292–305, 1963.

    Article  PubMed  CAS  Google Scholar 

  12. Cross, A.R., O.T.G. Jones, A.M. Harper, and A.W. Segal. Oxidation-reduction properties of the cytochrome b found in the plasma-membrane fraction of human neutrophils. Biochem. Int. 194:599–606, 1981.

    CAS  Google Scholar 

  13. Dawson, C.A., C.W. Christiansen, D.A. Rickaby, J.H. Linehan, and M.R. Johnston. Lung damage and pulmonary uptake of serotonin in intact dogs. J. Appl. Physiol. 58:1761–1766, 1985, 1985.

    PubMed  CAS  Google Scholar 

  14. Dawson, C.A. and J.H. Linehan. Biogenic amines. In: Lung Biology in Health and Disease, edited by D. Massaro. New York: Marcel Dekker, Inc., Vol. 41—Lung Cell Biology, 1989, pp. 1091–1139.

    Google Scholar 

  15. Dawson, C.A., D.L. Roerig, and J.H. Linehan. Evaluation of endothelial injury in the human lung. Chest 10:13–24, 1989.

    CAS  Google Scholar 

  16. Dupuis, J., C. Goresky, and D.J. Stewart. Pulmonary removal and production of endothelin in the anesthetized dog. J. Appl. Physiol. 76:694–700, 1994.

    PubMed  CAS  Google Scholar 

  17. Gillis, C.N. Pharmacological aspects of metabolic processes in the pulmonary microcirculation. Ann. Rev. Pharmacol. Toxicol. 26:183–200, 1986.

    Article  CAS  Google Scholar 

  18. Gillis, C.N. Pulmonary extraction of PGE1 in the adult respiratory distress syndrome. Am. Rev. Respir. Dis. 137:1–2, 1988.

    Article  PubMed  CAS  Google Scholar 

  19. Goldenberg, H. Plasma membrane redox activities. Biochim. Biophys. Acta 694:203–223, 1982.

    PubMed  CAS  Google Scholar 

  20. Goldenberg, H., F.L. Crane, and J. Morre. NADH oxidoreductase of mouse liver plasma membranes. J. Biol. Chem. 254:2491–2498, 1979.

    PubMed  CAS  Google Scholar 

  21. Goresky, C.A., J.W. Warnica, J.H. Gurgess, and B.E. Nadeau. Effect of exercise on dilution estimates of extravascular lung water and on the carbon monoxide diffusing capacity in normal adults. Circulation 37:379–389, 1975.

    CAS  Google Scholar 

  22. Harris, T.R., R.J. Roselli, C.R. Maurer, R.E. Parker, and N.A. Pou. Comparison of labeled propanediol and urea as markers of lung vascular injury. J. Appl. Physiol. 62:1852–1859, 1987.

    PubMed  CAS  Google Scholar 

  23. Kennedy, T.P., N.V. Rao, C. Hopkins, L. Pennington, E. Tolley, and J.R. Hoidal. Role of reactive oxygen species in reperfusion injury of the rabbit lung. J. Clin. Invest. 83:1326–1335, 1989.

    Article  PubMed  CAS  Google Scholar 

  24. Low, H., F.L. Crane, E.J. Patrick, G.S. Patten, and M.G. Clark. Properties and regulation of trans-plasma membrane redox system of perfused rat heart. Biochim. Biophys. Acta 804:253–260, 1984.

    Article  PubMed  CAS  Google Scholar 

  25. Merker, M., B. Bongard, J. Linehan, Y. Okamoto, D. Vyprachticky, B.M. Brantmeier, D.L. Roerig and C. Dawson. Pulmonary endothelial thiazine uptake: Separation of cell surface reduction from intracellular reoxidation. Am. J. Physiol. 272 (Lung Cell. Mol. Physiol. 16): L673–L680 (in press), 1997.

    PubMed  CAS  Google Scholar 

  26. Morre, D.J., M. Davidson, C. Geilen, J. Lawrence, G. Flesher, R. Crowe, and F.L. Crane. NADH oxidase activity of rat liver plasma membrane activated by guanine nucleotides. Biochem. Int. 292:647–653, 1993.

    CAS  Google Scholar 

  27. Navas, P., J.M. Villalba, and F. Cordoba. Ascorbate function at the plasma membrane. Biochim. Biophys. Acta 1197:1–13, 1994.

    PubMed  CAS  Google Scholar 

  28. Olson, L.E., R.D. Bongard, C.A. Dawson, and J.H. Linehan. On-line detection of reduction and sequestration of thiazine dyes by the lung. FASEB J. 8:A916, 1994.

    Google Scholar 

  29. Ravel, P. and F. Lederer. Affinity-labeling of an NADPH-binding site on the heavy subunit of flavocytrochrome b558 in particulate NADPH oxidase from activated human neutrophils. Biochem. Biophys. Res. Commun. 196:543–552, 1993.

    Article  PubMed  CAS  Google Scholar 

  30. Segal, A.W. and A. Abo. The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem. Sci. 18:43–47, 1993.

    Article  PubMed  CAS  Google Scholar 

  31. Sun, I.L., E.E. Sun, F.L. Crane, D.J. Morre, A. Lindgren, and H. Low. Requirement for coenzyme Q in plasma membrane electron transport. Proc. Natl. Acad. Sci. 89:11126–11130, 1992.

    Article  PubMed  CAS  Google Scholar 

  32. Toole-Simms, W., I.L. Sun, D.J. Morre, and F.L. Crane. Transplasma membrane electron and proton transport is inhibited by chloroquine. Biochemistry 4:761–769, 1990.

    Google Scholar 

  33. Villalba, J.M., A. Canalejo, M.I. Buron, F. Cordoba, and P. Navas. Thiol groups are involved in NADH-ascorbate free radical reductase activity of rat liver plasma membrane. Biochem. Biophys. Res. Commun. 192:707–713, 1993.

    Article  PubMed  CAS  Google Scholar 

  34. Zulueta, J.J., F.-S. Yu, I.A. Hertig, and V.J. Thannickal. Release of hydrogen peroxide in response to hypoxia-reoxygenation: Role of an NAD(P)H oxidase-like enzyme in endothelial cell plasma membrane. Am. J. Respir. Cell Mol. Biol. 12:41–49, 1995.

    Article  PubMed  CAS  Google Scholar 

  35. Zurbriggen, R. and J.L. Dreyer. An NADH-diaphorase is located at the cell plasma membrane in a mouse neuroblastoma cell line NB41A3. Biochim. Biophys. Acta 1183:513–520, 1994.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Dawson, C.A. et al. (1998). Pulmonary Endothelial Surface Reductase Kinetics. In: Bassingthwaighte, J.B., Linehan, J.H., Goresky, C.A. (eds) Whole Organ Approaches to Cellular Metabolism. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2184-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2184-5_18

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7449-0

  • Online ISBN: 978-1-4612-2184-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics