Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 128))

Abstract

Prior to the arrival of settlers to the United States, natural communities dominat by longleaf pine (Pinus palustris Mill.) and maintained by periodic fire occurre throughout most of the southern Atlantic and Gulf coastal plains. These com munities once covered an estimated twenty-four to thirty-six million hectare (h or two-thirds of the area in the Southeast (Vance, 1895; Chapman, 1932). Th range of longleaf pine covers a broad arc along the coastal plain and portions the Piedmont region from southern Virginia, south to central Florida, westward eastern Texas, and extends further inland in the Cumberland Plateau and Ridg and Valley physiographic provinces in Alabama and Georgia. Dissimilar to th other southern pines, longleaf pine tolerates a wide variety of habitats. It is foun growing on dry mountain slopes and ridges in Alabama and northwest Georgia, the low, wet flatwoods, as well as the excessively drained sandhills found alon the coast and fall line. Chapman (1 932) commented that longleaf pine covere more acreage than any other North American ecosystem dominated by a sing tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boyer WD (1968) Foliage weight and stem growth of longleaf pine. USDA For Ser SO Res Note 86, 2.

    Google Scholar 

  • Boyer WD (1987) Volume growth loss: A hidden cost of periodic prescribed burning in longleaf pine? South J Appl For 11(3): 154–157.

    Google Scholar 

  • Boyer, WD (1994) Eighteen years of seasonal burning in longleaf pine: Effects on overstory growth. In Proceedings of the 12th International Conference on Fire and Forest Meteorology. Society of American Foresters, Bethesda, MD.

    Google Scholar 

  • Boyer WD, Fahnestock GR (1966) Litter in longleaf pine stands thinned to prescribed densities. USDA For Serv SO Res Note 31,4.

    Google Scholar 

  • Chapman HH (1932) Is the longleaf type a climax? Ecol 13:328–334.

    Article  Google Scholar 

  • Clutter JL (1963) Compatible growth and yield models for loblolly pine. For Sci 9:354–371.

    Google Scholar 

  • Clutter JL, Jones EP Jr (1980) Prediction of growth after thinning of old-field slash pine plantations. USDA For Serv SE Res Paper 217, 14.

    Google Scholar 

  • Gresham C A (1982) Litterfall patterns in mature loblolly and longleaf pine stands in coastal South Carolina. For Sci 26(2):223–231.

    Google Scholar 

  • Heyward FD (1933) Monthly trend of needle fall in longleaf pine in northern Florida for period August, 1932 to August, 1933. Nav Stores Rev 43(34): 12.

    Google Scholar 

  • Jordan DN, Lockaby BG (1990) Time series modelling of relationships between climate and long-term radial growth of loblolly pine. Can J For Res 20:738–742.

    Article  Google Scholar 

  • Kush JS, Meldahl RS, Dwyer SP, Farrar RM Jr (1986) Naturally regeneratedlongleaf pine growth and yield research. In Phillips DR (Ed) Proceedings of the Fourth Biennial Southern Silvicultural Research Conference. USDA For Serv SE Gen Tech Rep 42:343–344.

    Google Scholar 

  • Meyer SJ, Hubbard KG, Wilhite DA (1993) A crop specific drought index for corn. II. Application in drought monitoring and assessment. Agron J 85:396–399.

    Article  Google Scholar 

  • Noss RF (1989) Longleaf pine and wiregrass: Keystone components of an endangered ecosystem. Nat Areas J 9(4):211–213.

    Google Scholar 

  • Palmer WC (1965) Meteorological drought. US Dept Comm Weath Bur Res Paper No. 45, 58.

    Google Scholar 

  • Quicke HE, Meldahl RS, Kush JS (1994) Basal area growth of individual trees: A model derived from a regional longleaf pine growth study. For Sci 40(3):528–542.

    Google Scholar 

  • Rayamajhi, JN (1996) Productivity of Natural Stands of Longleaf Pine in Relation to Climatic Factors. PhD dissertation, Auburn University.

    Google Scholar 

  • Robarge WP, Fernandez I (1986) Quality assurance methods manual for laboratory analytical techniques. US Environ Prot Agen, For Resp Prog, Environ Res Lab, Corvallis, OR.

    Google Scholar 

  • Somers GL, Farrar RM Jr (1991) Biomathematical growth equations for natural longleaf pine stands. For Sci 37(1):227–244.

    Google Scholar 

  • Taras MA, Clark A III (1977) Aboveground biomass of longleaf pine in anatural sawtimber stand in southern Alabama. USDA For Serv SE Res Paper 162, 32.

    Google Scholar 

  • Vance LJ (1895) The future of the longleaf pine belt. Gard and For 8:278–279.

    Google Scholar 

  • Wiegert RG, Monk CD (1972) Litter production and energy accumulation in three plantations of longleaf pine (Pinus palustris Mill.). Ecol 53(5):949–953.

    Article  Google Scholar 

  • Zedaker SM, Nicholas NS (1990) Quality assurance methods manual for siteclassification and field measurements. United States Environmental Protection Agency, Forest Response Program, Environmental Research Laboratory, Corvallis, OR.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Meldahl, R.S., Kush, J.S., Rayamajhi, J.N., Farrar, R.M. (1998). Productivity of Natural Stands of Longleaf Pine in Relation to Competition and Climatic Factors. In: Mickler, R.A., Fox, S. (eds) The Productivity and Sustainability of Southern Forest Ecosystems in a Changing Environment. Ecological Studies, vol 128. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2178-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2178-4_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7446-9

  • Online ISBN: 978-1-4612-2178-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics