Skip to main content

Pseudoconvex Domains in ℙn: A Question on the 1-Convex Boundary Points

  • Chapter
Analysis and Geometry in Several Complex Variables

Part of the book series: Trends in Mathematics ((TM))

Abstract

Let ℙn be n-dimensional complex projective space, let Ω ⊊ ℙn be a pseudoconvex domain, and let δ(z) be the distance from z ∈ Ω to the boundary of Ω with respect to the Fubini-Study metric. According to a fundamental theorem of A. Takeuchi [T], the function — log δ is plurisubharmonic and enjoys an estimate

$$ \sqrt { - 1\partial \overline {\partial (} } - \log \delta ) \geqslant \frac{1} {3}\omega _{FS,} $$

where ωFS denotes the Kähler form of the Fubini-Study metric, and the left hand side of the inequality is defined as a current. From Takeuchi’s theorem it follows that Ω admits a strictly plurisubharmonic exhaustion function, so that Ω is a Stein manifold. This means in particular that the boundary of Ω is connected if n ≥ 2 (cf. [G-R]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreotti, A. and Vesentini, E., Sopra un teorema di Kodaira, Ann. Sci. Norm. Sup. Pisa 15 (1961), 283–309.

    MathSciNet  MATH  Google Scholar 

  2. Andreotti, A. and Vesentini, E., Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Publ. Math. IHES 25 (1965), 81–130.

    MathSciNet  Google Scholar 

  3. Cerveau, D., Minimaux des feuilletages algébriques de ℂℙ(n), Ann. Inst. Fourier. Grenoble 43 (1993), 1535–1543.

    MathSciNet  MATH  Google Scholar 

  4. Diederich, K. and Ohsawa, T., Harmonie mappings and the disc bundles over compact Kähler manifolds, Publ. RIMS, Kyoto Univ. 21 (1985), 819–833.

    Article  MathSciNet  MATH  Google Scholar 

  5. Docquier, F. and Grauert, H., Levisches Problem und Rungescher Satz für Teilgebiete Steinschen Mannigfaltigkeiten, Math. Ann. 140 (1960), 94–123.

    Article  MathSciNet  MATH  Google Scholar 

  6. Elencwajg, G., Pseudoconvexité locale dans les variétés Kählériennes, Ann. Inst. Fourier 25 (1975), 295–314.

    MathSciNet  MATH  Google Scholar 

  7. Gunning, R. C. and Rossi, H., Analytic functions of several complex variables, Prentice-Hall, Inc. Englewood Cliffs, N. J. 1965.

    MATH  Google Scholar 

  8. Jost, J., Riemannian geometry and geometric analysis, Springer, 1995.

    Google Scholar 

  9. Kodaira, K., On Kähler varieties of restricted type, Ann. of Math. 60 (1954), 28–48.

    Article  MathSciNet  MATH  Google Scholar 

  10. Lins Neto, A., A note on projective Levi-flats and minimal sets of algebraic functions, preprint.

    Google Scholar 

  11. Nakano, S., On complex analytic vector bundles, J. M. S. Japan 7 (1955), 1–12.

    Article  MATH  Google Scholar 

  12. Ohsawa, T., A Stein domain with smooth boundary which has a product structure, Publ. RIMS, Kyoto Univ. 18 (1982), 1185–1186.

    Article  MathSciNet  MATH  Google Scholar 

  13. Ohsawa, T., Cohomology vanishing theorems on weakly 1-complete manifolds, Pubi. RIMS, Kyoto Univ. 19 (1983), 1181–1201.

    Article  MathSciNet  MATH  Google Scholar 

  14. Ohsawa, T. and Sibony, N., Bounded P. S. H. functions and pseudoconvexity in Kähler manifolds, Nagoya Math. J. 249 (1998), 1–8.

    MathSciNet  Google Scholar 

  15. Royden, H. L., The extension of regular holomorphic maps, Proc. Amer. Math. Soc. 43 (1974), 306–310.

    Article  MathSciNet  MATH  Google Scholar 

  16. Siu, Y.-T., Every Stein subvariety admits a Stein neighbourhood, Invent. Math. 38 (1976), 89–100.

    Article  MathSciNet  MATH  Google Scholar 

  17. Suzuki, O., Pseudoconvex domains on a Kähler manifold with positive holomorphic bisectional curvature, Publ. RIMS, 12 (1976), 191–214.

    Article  MATH  Google Scholar 

  18. Takeuchi, A., Domains pseudoconvexes infinis et la métrique riemannienne dans un espace projectif, J. Math. Soc. Japan, 16 (1964), 159–181.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Boston

About this chapter

Cite this chapter

Ohsawa, T. (1999). Pseudoconvex Domains in ℙn: A Question on the 1-Convex Boundary Points. In: Komatsu, G., Kuranishi, M. (eds) Analysis and Geometry in Several Complex Variables. Trends in Mathematics. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2166-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2166-1_11

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7441-4

  • Online ISBN: 978-1-4612-2166-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics