Skip to main content

Bone Regeneration

Concepts and Update

  • Chapter
Distraction of the Craniofacial Skeleton

Abstract

Bone is a dynamic organ that can regenerate. Regeneration may be defined as restoration of form and function indistinguishable from that derived embryologically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hollinger JO, Wong MEK. The integrated processes of hard tissue regeneration with special emphasis on fracture healing. Oral Surg, Oral Med, Oral Path, Oral Radiol 82: 594–606, 1996.

    Article  CAS  Google Scholar 

  2. Herndon DN, Nguyen TT, Gilpin DA. Growth factors, Local and Systemic. Arch Surg 128: 1227–1233, 1993.

    PubMed  CAS  Google Scholar 

  3. Riddle RD, Johnson R, Laufer E et al. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 75: 1401–1416, 1993.

    Article  PubMed  CAS  Google Scholar 

  4. Robinson CJ. Growth factors: therapeutic advances in wound healing. Ann Med 25: 535–538, 1993.

    PubMed  CAS  Google Scholar 

  5. Kaplan FS, Shore EM. Bone morphogen- etic proteins and c-fos: early signals in endchondral bone formation. Bone 19 Supp: 13s—21 s, 1996.

    Google Scholar 

  6. Robertson SA, Seamark RF, Guilbert LJ et al. The role of cytokins in gestation. Crit Rev Immunol 14: 239–292, 1994.

    PubMed  CAS  Google Scholar 

  7. Takaku F. Clinical applications of cytokines for cancer treatment. Oncology 51: 123–128, 1994.

    Article  PubMed  CAS  Google Scholar 

  8. Sato N, Miyajima A. Multimeric cytokine receptors: common versus specific functions. Curr Opin Cell Biol 6: 174–184, 1994.

    Article  PubMed  CAS  Google Scholar 

  9. Enneking WF, Burchardt H, Fume JJ etal. Physical and biological aspects of repair in dog cortical-bone transplants. J Bone Joint Surg 57-A: 237–252, 1975.

    Google Scholar 

  10. Burchardt H, Glowczewskie BS, Enneking WF. Allogeneic segmental fibular transplants in azathioprine-immunosuppressed dogs. J Bone Joint Surg 59-A: 881–893, 1977.

    Google Scholar 

  11. Burchardt H, Enneking WF. Transplantation of bone. Surg Clin North Am 58: 403–427, 1978.

    PubMed  CAS  Google Scholar 

  12. Burchardt H. The biology of bone graft repair. Clin Orthop 174: 28–42, 1983.

    PubMed  Google Scholar 

  13. Simmons DJ. Fracture healing perspectives. Clin Orthop 200: 100–113, 1985.

    PubMed  Google Scholar 

  14. Hauschka PV, Mavrakos AE, Iafrati MD et al. Growth factors in bone matrix. Isolation of multiple types with affinity chromatography and heparin sepharose. J Biol Chem 261: 12665–12674, 1986.

    PubMed  CAS  Google Scholar 

  15. Albrektsson T, Albrektsson B. Osseo- integration of bone implants. A review of an alternative mode of fixation. Acta Orthop Scand 58: 567–577, 1987.

    Article  PubMed  CAS  Google Scholar 

  16. Burchardt H. Biology of bone transplantation. Orthop Clin North Am 18: 187–196, 1987.

    PubMed  CAS  Google Scholar 

  17. Goldberg VM, Stevenson S. Natural history of autografts and allografts. Clin Orthop 225: 7–16, 1987.

    PubMed  Google Scholar 

  18. Hauschka PV. Growth factor effects in bone. In: Hall BK, ed. The Osteoblast and Osteocyte. Telfor Press; 1990: 103–170.

    Google Scholar 

  19. Enneking WF, Mindell ER. Observations on massive retrieved human allografts. J Bone Joint Surg 73-A: 1123–1142, 1991.

    Google Scholar 

  20. Stevenson S, Li XQ, Martin B. The fate of cancellous and cortical bone after transplantation of fresh and frozen tissue antigen- matched and mismatched osteochondral allografts in dogs. J Bone Joint Surg 73-A: 1143–1156, 1991.

    Google Scholar 

  21. Bolander ME. Regulation of fracture repair by growth factors. Proc Soc Exp Biol Med 200: 165–170, 1992.

    PubMed  CAS  Google Scholar 

  22. Pierce GF. Macrophages: Important physiologic and pathologic sources of polypeptide growth factors. Am J Respir Cell Mol Biol 2: 233–234, 1992.

    Google Scholar 

  23. Pierce GF, Mustoe TA, Altrock BW et al. Role of platelet-derived growth factor in wound healing. J Cell Biochem 45: 319–326, 1991.

    Article  PubMed  CAS  Google Scholar 

  24. Massague J. The transforming growth factor-beta family. Annu Rev Cell Biol 6: 597–641, 1990.

    Article  PubMed  CAS  Google Scholar 

  25. Centrella M, McCarthy TL, Canalis E. Current concepts review. Transforming growth factor beta and remodeling of bone. J Bone Joint Surg 73-A: 1418–1428, 1991.

    Google Scholar 

  26. Davidson J, Buckley A, Woodward S et al. Mechanisms of accelerated wound repair using epidermal growth factor and basic fibroblast growth factor. In: Barbul A, Pines E, Caldwell M, Hunt T, eds. Growth Factors and Other Aspects of Wound Healing. Biological and Clinical Implications. Proceedings of the Second International Symposium on Tissue Repair, Tarpon Springs, Florida, May 13–17, 1987. New York: Alan R. Liss; 1988: 63–75.

    Google Scholar 

  27. Oursler MJ. Osteoclast synthesis and secretion and activation of latent transforming growth factor beta. J Bone Miner Res 9. 443–452, 1994.

    Article  PubMed  CAS  Google Scholar 

  28. Baylink D, Finkelman RD, Mohan S. Growth factors to stimulate bone formation. J Bone Miner Res 8: 565–572, 1993.

    Article  Google Scholar 

  29. Mundy GR. Cytokines and growth factors in the regulation of bone remodeling. J Bone Miner Res 8: 505–510, 1993.

    Article  Google Scholar 

  30. Pan WT, Einhorn TA. The biochemistry of fracture healing. Curr Orthop 6: 207–213, 1992.

    Article  Google Scholar 

  31. Paralkar VM, Nandedkar AKN, Pointer RH et al. Interaction of osteogenin, a heparin binding bone morphogenetic protein, with type IV collagen. J Biol Chem 265: 17281–17284, 1990.

    PubMed  CAS  Google Scholar 

  32. Paralkar VM, Vukicevic S, Reddi AH. Transforming growth factor (3 type I binds to collagen IV of basement membrane matrix: Implications for development. Dev Biol 143: 303–308, 1991.

    Article  PubMed  CAS  Google Scholar 

  33. Raghow R. The role of extracellualr matrix in postinflammatory wound healing and fibrosis. FASEB J 8: 823–831, 1994.

    PubMed  CAS  Google Scholar 

  34. Ingber DE, Deepa P, Sun Z et al. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis. J Biomech 28: 1471–1484, 1995.

    Article  PubMed  CAS  Google Scholar 

  35. Reddi AH. Regulation of bone differentiation by local and systemic factors. In: Peck WA, ed. Bone and Mineral Research/3. Amsterdam: Elsevier Science; 1985: 27–47.

    Google Scholar 

  36. Reddi AH. Bone and cartilage morphogenesis: Cell biology to clinical applications. Curr Opin Gen Dev 4: 737–744, 1994.

    Article  Google Scholar 

  37. Spiessl B. New concepts in maxillofacial bone surgery. In: Spiessl B, ed. New Concepts in Maxillofacial Bone Surgery. Berlin: Springer-Verlag; 1976: 1–179.

    Google Scholar 

  38. Friedenstein AJ. Determined and inducible osteogenic precursor cells. In: Hard Tissue Growth, Repair, and Remineralization. Ciba Foundation, Symposium 11. Amsterdam: Associated Scientific; 1973: 169–185.

    Google Scholar 

  39. Owen M. Lineage of osteogenic cells and their relationship to the stromal system. In: Peck W, ed. Lineage of Osteogenic Cells and Their Relationship to the Stromal System. Amsterdam: Elsevier Science; 1985:1– 25.

    Google Scholar 

  40. Brighton CT, Lorich DG, Kupcha R et al. The pericyte as a possible osteoblast progenitor cell. Clin Orthop 275: 287–299, 1992.

    PubMed  Google Scholar 

  41. Owen M. The origin of bone cells in the postnatal organism. Arthritis Rheum 23: 1073–1080, 1980.

    Article  PubMed  CAS  Google Scholar 

  42. Wakitani S, Tatsuhiko G, Pineda SJ et al. Mesenchymal cell-based repair of large, full- thickness defects of articular cartilage. J Bone Joint Surg 76A: 579–592, 1994.

    PubMed  CAS  Google Scholar 

  43. Brighton CT, Hunt RM. Early histological and ultrastructural changes in medullary fracture callus. J Bone Joint Surg 73-A:832– 847, 1991.

    Google Scholar 

  44. Wozney JM. The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev 32: 160–167, 1992.

    Article  PubMed  CAS  Google Scholar 

  45. Celeste AJ, Song J J, Cox K et al. Bone morphogenetic protein-9, a new member of the TGF-(3 superfamily. J Bone Miner Res 9: S137, 1994.

    Google Scholar 

  46. Kingsley DM. The TGF-beta superfamily: New members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8: 133–146, 1994.

    Article  PubMed  CAS  Google Scholar 

  47. Nguyen AM, Tran M, Oates T et al. Myogenic responses of human PDL cells to tissue growth factors. J Dent Res 74: 251, 1995.

    Google Scholar 

  48. Storm EE, Huynh TV, Copeland NG et al. Limb alterations in brachypodism mice due to mutations in a new member of the TGF- beta superfamily. Nature 368: 639–643, 1994.

    Article  PubMed  CAS  Google Scholar 

  49. Chang SC, Hoang B, Thomas JT et al. Cartilage-derived morphogenetic proteins. J Biol Chem 269: 28227–28234, 1994.

    PubMed  CAS  Google Scholar 

  50. Einhorn TA. Enhancement of fracture healing by molecular or physical means: An overview. In: Brighton CT, Freidlander GE, Lane JM, eds. Bone Formation and Repair. Rosemont, IL: AAOS; 1994: 223–238.

    Google Scholar 

  51. Ishidou Y, Kitajima I, Obama H et al. Enhanced expression of type I receptors for bone morphogenetic proteins during bone formation. J Bone Miner Res 10: 1651–1659, 1995.

    Article  PubMed  CAS  Google Scholar 

  52. Urist MR. The search for and discovery of bone morphogenetic protein. In: Urist MR, O’Conner BT, Burwell RG, eds. Bone Grafts, Derivatives and Substitutes. London: Butterworth; 1994: 315–362.

    Google Scholar 

  53. Wolpert L. Positional information revisited. Development 107: 3–12, 1989.

    PubMed  Google Scholar 

  54. Elima K. Osteoinductive proteins. Ann Med 25: 395–402, 1993.

    Article  PubMed  CAS  Google Scholar 

  55. Harris SE, Harris MA, Mahy P et al. Expression of bone morphogenetic protein messenger RNAs by normal rat and human prostate and prostate cancer cells. Prostate 24: 204–211, 1994.

    Article  PubMed  CAS  Google Scholar 

  56. Nakase T, Nomura S, Yoshikawa H et al. Transient and localized expression of bone morphogenetic protein 4 messenger RNA during fracture healing. J Bone Miner Res 9: 651–659, 1994.

    Article  PubMed  CAS  Google Scholar 

  57. Bostrom MG, Lane J, Berberian WS etal. Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing. J Orthop Res 13: 357–367, 1995.

    Article  PubMed  CAS  Google Scholar 

  58. Duboule D. How to make a limb? Science 266: 575–576, 1994.

    Article  PubMed  CAS  Google Scholar 

  59. Laufer E, Nelson CE, Johnson RL et al. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 79: 993–1003, 1994.

    Article  PubMed  CAS  Google Scholar 

  60. Tickle C. On making a skeleton. Nature 368: 587–588, 1994.

    Article  PubMed  CAS  Google Scholar 

  61. Carey D, Liu X. Expression of bone morpho- genetic protein-6 messenger RNA in bovine gowth plate chondrocytes of different size. J Bone Miner Res 10: 401–405, 1995.

    Article  PubMed  CAS  Google Scholar 

  62. Hollinger JO. Factors for osseous repair and delivery: Part 1. J Craniofac Surg 4: 115–121, 1993.

    Google Scholar 

  63. Goodkin DA, Pierce GF. The role platelet- derived growth factor in osteoblast function and bone synthesis: Conflicting evidence. Wound Rep Regen 1: 203–212, 1993.

    Article  CAS  Google Scholar 

  64. Pierce GF, Mustoe TA. Pharmacologic enhancement of wound healing. Annu Rev Med 46: 467–481, 1995.

    Article  PubMed  CAS  Google Scholar 

  65. Kenley R, Yim K, Abrams J et al. Biotechnology and bone graft substitutes. Pharm Res 10: 1393–1401, 1993.

    Article  PubMed  CAS  Google Scholar 

  66. Kenley R, Marden L, Turek T et al. Osseous regeneration in the rat calvarium using novel delivery systems for recombinant human bone morphogenetic protein-2 (rhBMP-2). J Biomed Mater Res 28: 1139–1147, 1994.

    Article  PubMed  CAS  Google Scholar 

  67. Marden LJ, Hollinger JO, Chaudhari A. et al. Recombinant bone morphogenetic protein-2 is superior to demineralized bone matrix in repairing craniotomies defects in rat. J Biomed Mater Res 28: 1127 - 1138, 1994.

    Article  PubMed  CAS  Google Scholar 

  68. Cook SD, Baffes GC, Wolfe MW etal. The effect of human recombinant osteogenic protein-1 on healing of large segmental bone defects. J Bone Joint Surg 76A: 827–838, 1994.

    PubMed  CAS  Google Scholar 

  69. Zegzula HD, Hollinger JO, Brekke J etal. Bone formation with use of rh BMP-2 (Recombinant Human Bone Morphogenetic Protein-2). J Bone Joint Surg 79-A: 1778–1790, 1997.

    Google Scholar 

  70. Gerhart TN, Kirker-Head CA, Kriz MJ et al. Healing segmental femoral defects in sheep using recombinant human bone morphogenetic protein (rhBMP-2). Clin Orthop 293: 317–326, 1993.

    PubMed  Google Scholar 

  71. Toriumi DM, Kotler HS, Luxunberg DP et al. Mandibular reconstruction with a recombinant bone-inducing factor. Functional, histologic, and biomechanical evaluation. Arch Otolaryngol Head Neck Surg 117: 1101–1112, 1991.

    PubMed  CAS  Google Scholar 

  72. Mayer MH, Hollinger JO, Ron E et al. Repair of alveolar clefts in dogs with recombinant bone morphogenetic protein and poly (a-hydroxy acid). Plastic Reconstr Surg 98: 247–259, 1996.

    Article  CAS  Google Scholar 

  73. Cook SD, Baffes GC, Wolfe MW etal. Recombinant human bone morphogentic protein-7 induces healing in a canine long- bone segmental defect model. Clin Orthop 301: 302–312, 1994.

    PubMed  Google Scholar 

  74. Cook SD, Wolfe MW, Salkeld SL etal. Effect of recombinant human osteogenic protein-1 on healing of segmental defects in non- human primates. J Bone Joint Surg 77-A: 734–750, 1995.

    Google Scholar 

  75. Schmitz JP, Hollinger JO. The critical sized defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop 205: 299–308, 1986.

    PubMed  Google Scholar 

  76. Hollinger JO, Kleinschmidt J. The critical size defect as an experimental model to test bone repair materials. J Craniofac Surg 1: 60–68, 1990.

    Article  PubMed  CAS  Google Scholar 

  77. Nöda M, Camilliere JJ. In vivo stimulation of bone formation by transforming growth factor-ß. Endocrinology 124:2991–2994, 1989.

    Article  PubMed  Google Scholar 

  78. Joyce ME, Roberts AB, Sporn MB et al. Transforming growth factor-beta and the initiation of chondrogenesis and osteogenesis in the rat femur. J Cell Biol 110: 2195–2207, 1990.

    Article  PubMed  CAS  Google Scholar 

  79. Tanaka T, Taniguchi Y, Gotoh K et al. Morphological study of recombinant human transforming growth factor ßl-induced intramembranous ossification in neonatal rat parietal bone. Bone 14: 117–123, 1993.

    Article  PubMed  CAS  Google Scholar 

  80. Beck LS, Deguzman L, Lee WP etal. TGF- ßl induces bone closure of skull defects. J Bone Miner Res 6: 1257–1265, 1991.

    Article  PubMed  CAS  Google Scholar 

  81. Beck LS, Ammann AJ, Aufdemorte TB et al. In vivo induction of bone by recombinant human transforming growth factor beta 1. J Bone Miner Res 6:961–968, 1991.

    Article  PubMed  CAS  Google Scholar 

  82. Gombotz WR, Pankey SC, Bouchard LS etal. Stimulation of bone healing by transforming growth factor beta-1 released from polymeric or ceramic implants. J Appl Biomater 5: 141–150, 1994.

    Article  PubMed  CAS  Google Scholar 

  83. Wozney JM, Rosen V, Byrne M etal. Growth factors influencing bone development. J Cell Sci Suppl 13: 149–156, 1990.

    PubMed  CAS  Google Scholar 

  84. Kingsley D. What do BMPs do in mammals? Clues from the mouse shortear mutation. Trends Genet 10: 16–21, 1994.

    Article  PubMed  CAS  Google Scholar 

  85. Urist MR. Bone: Formation by autoinduction. Science 150: 893–899, 1965.

    Article  PubMed  CAS  Google Scholar 

  86. O’Keefe RJ, Crabb ID, Puzas JE et al. Effects of transforming growth factor beta-a and fibroblast growth factor on DNA synthesis in growth plate chondrocytes are enhanced by insulin-like growth factor-I. J Ort hop Res 12: 299–310, 1994.

    Article  Google Scholar 

  87. Bondy C. Clinical uses of insulin-like growth factor I. Ann Intern Med 120: 593–601, 1994.

    PubMed  CAS  Google Scholar 

  88. Klagsbrun M, Vlodavsky I. Biosynthesis and storage of basic fibroblast growth factor (BFGF) by endothelial cells: implication for the mechanism of angiogenesis. In: Barbul A, Pines E, Caldwell M, Hunt T, eds. Growth Factors and Other Aspects of Wound Healing. Biological and Clinical Implications. Proceedings of the Second International Symposium on Tissue Repair, Tarpon Springs, Florida, May 13–17, 1987. New York: Alan R Liss; 1988: 55–61.

    Google Scholar 

  89. Chintala SK, Miller RR, McDevitt CA. Basic fibroblast growth factor binds to heparin sulfate in the extracellular matrix of rat growth plate chondrocytes. Arch Biochem Biophys 310: 180 - 186, 1994.

    Article  PubMed  CAS  Google Scholar 

  90. Mustoe TA, Pierce GF, Morishima C et al. Growth factor-induced acceleration of tissue repair through direct and inductive activities in a rabbit dermal ulcer model. J Clin Invest 87: 694–703, 1991.

    Article  PubMed  CAS  Google Scholar 

  91. Pierce G, Tarpley J, Yanagihara D et al. Platelet-derived growth factor (BB homodimer), transforming growth factor-ß, and basic fibroblast growth factor in dermal wound healing. Am J Pathol 140: 1375–1388, 1992.

    PubMed  CAS  Google Scholar 

  92. Lynch SE, Ruiz G, Williams RC et al. The effects of short-term application of a combination of platelet-derived growth factor and insulin-like growth factors on periodontal wound healing. J Periodontol 62: 458–467, 1991.

    Article  PubMed  CAS  Google Scholar 

  93. Giannobile WV. Periodontal tissue engineering by growth factors. Bone 19 Supp:23s–37s, 1996.

    Google Scholar 

  94. Giannobile WV, Finkelman RD, Lynch SE. Comparison of canine and non-human primate animal models for periodontal regenerative therapy: Results following a single administration of PDGF/IGF-I. J Periodontol 65: 1158–1168, 1994.

    PubMed  CAS  Google Scholar 

  95. Howell TH, Fiorellini JP, Paquette DW et al. Evaluation of a combination of recombinant human platelet-derived growth factor-BB and recombinant human insulin-like growth factor-I in patients with periodontal disease. J Dent Res 74: 253, 1995.

    Google Scholar 

  96. Parfitt MA. The cellular basis of bone remodeling: The quantum concept reexamined in light of recent advances in the cell biology of bone. Calcif Tissue Int 36: 37–45, 1984.

    Article  Google Scholar 

  97. Frost HM. Intermediary Organization of the Skeleton. Vol. I. Boca Raton, FL: CRC Press; 1986.

    Google Scholar 

  98. Frost HM. Intermediary Organization of the Skeleton. Vol. II. Boca Raton, FL: CRC Press; 1986.

    Google Scholar 

  99. Parfitt AM, Roodman GD, Hughes DE et al. A new model for the regulation of bone resorption, with particular reference to the effects of bisphosphonates. J Bone Miner Res 11: 150–159, 1996.

    Article  PubMed  CAS  Google Scholar 

  100. Parfitt AM. Osteonal and hemi-osteonal remodeling: The spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem 55: 273–286, 1994.

    Article  Google Scholar 

  101. Bussey H. Cell shape determination: A pivotal role for Rho. Science 272: 224–225, 1996.

    Article  PubMed  CAS  Google Scholar 

  102. Heersche JN. Bone cells and bone turnover—the basis for pathogenesis. In: Tam CS, Heersche JN, Murray TM, eds. Metabolic Bone Disease: Cellular and Tissue Mechanisms. Boca Raton: CRC Press; 1989: 1–17.

    Google Scholar 

  103. Roodman GD, Kurihara N, Ohashi Y etal. Interleukin-6: A potential autocrine/ paracrine factor in Paget’s dieseas of bone. J Clin Invest 89: 46–52, 1992.

    Article  PubMed  CAS  Google Scholar 

  104. Takahashi S, Reddy SV, Chirgwin JM etal. Cloning and identification of annexin II as an autocrine/paracrine factor that increases osteoclast formation and bone resorption. J Biol Chem 269: 28696–28701, 1994.

    PubMed  CAS  Google Scholar 

  105. Kimmel D. A paradigm for skeletal strength homeostasis. J Bone Joint Miner Res 8: 515–522, 1993.

    Article  Google Scholar 

  106. Hughes DE, Wright KR, Mundy GR et al. TGF-beta 1 induces osteoclast apoptosis in vitro. J Bone Miner Res 9: S138, 1994.

    Google Scholar 

  107. Linkhart TA, Mohan S, Baylink DJ. Growth factors for bone growth and repair: IGF, TGF beta, and BMP. Bone 19 Suppils–12s, 1996. Bone 19 Suppils-12s, 1996.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Hollinger, J., Mayer, M.H. (1999). Bone Regeneration. In: McCarthy, J.G. (eds) Distraction of the Craniofacial Skeleton. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2140-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2140-1_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7429-2

  • Online ISBN: 978-1-4612-2140-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics