Skip to main content

The Development of Approaches Based on Gene Therapy to Improve Muscle Healing Following Injury

  • Chapter
  • 130 Accesses

Part of the book series: Methods in Bioengineering ((MB))

Abstract

Muscle injuries are common, with an incidence varying from 10% to 55% of all injuries sustained in sports (Lehto and Jarvinen 1991). Muscle injuries are divided into 2 types: a shearing injury, in which both the myofibers and the connective tissue framework are torn, or an in situ injury, in which only the myofibers are damaged and the basal lamina and connective tissue sheaths do not undergo significant harm. Shearing injuries, the most frequent muscle injuries related to sports, may be lacerations, contusions, or strains, depending on the mechanism of injury (Lehto and Jarvinen 1991). Contusion is sustained through a significant compressive force to the muscle, such as a direct blow, a common occurrence in contact sports. A strain occurs when a forceful eccentric contraction is applied to an overstretched muscle, especially in jumping or sprinting (Garrett, Jr. 1990; Lehto and Jarvinen 1991). Injury is common near the musculotendinous junction (MTJ) of a superficial muscle that crosses 2 joints, such as the rectus femoris, semitendinosus, and gastrocnemius muscles. Though rather rare in sports, muscle laceration is a dramatic injury that consistently incapacitates athletes for long periods of time and often jeopardizes their professional careers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acsadi, G., Dickson, G., Love, D., Jani, A., Walsh, F.S., Gurusing, A., Wolff, J.A., and Davies, K.E. 1991. Human dystrophin expression in mdx mice after intramuscular injection of DNA constructs. Nature 352:815–18.

    Article  PubMed  CAS  Google Scholar 

  • Acsadi, G., Jani, A., Huard, J., Blaschuk, K., Massie, B., Holland, P., Lochmueller, H., and Karpati, G. 1994. Cultured human myoblasts and myotubes show markedly different transducibility by replication defective adenovirus recombinants. Gene Ther 1:338–40.

    PubMed  CAS  Google Scholar 

  • Allamedine, H.S., Dehaupas, M., and Fardeau, M. 1989. Regeneration of skeletal muscle fiber from autologous satellite cells multiplied in vitro. Muscle Nerve 12:544–55.

    Article  Google Scholar 

  • Allen, R.E. and Boxhorn, L.A. 1989. Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor 1, and fibroblast growth factor. J Cell Physiol 138:311–15.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J.E., Liu, L., and Kardami, E. 1991. Distinctive patterns of basic fibroblast growth factor (bFGF) distribution in degenerative and regenerating areas of dystrophic (mdx) striated muscle. Dev Biol 147:96–109.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J.E., Mitchell, C.M., McGeachie, J.K., and Grounds, M. 1995. The time of basic fibroblast growth factor expression in crush-injured skeletal muscles of SJL/J and BALB/c mice. Exp Cell Res 216:325–34.

    Article  PubMed  CAS  Google Scholar 

  • Bischoff, R. 1994. The satellite cell and muscle regeneration. In Engel A.G. and Franzin-Amstrong C. (eds.), Myology. 2nd ed. 97–118. Philadelphia: McGraw-Hill.

    Google Scholar 

  • Booth, D.K., Floyd, S.S., Day, C.S., Glorioso, J.c., Kovesdi, I., and Huard J. 1997. Myoblast mediated ex vivo gene transfer to mature muscle. J Tissue Eng 3: 125–33.

    Article  Google Scholar 

  • Campbell, J.S., Wenderoth, M.P., Hauschka, S.D., and Krebs, E.G. 1995. Differential activation of mitogen-activated protein kinase in response to basic fibroblast growth factor in skeletal muscle cells. Proc Natl Acad Sci USA 92:870–4.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, B.M. and Faulkner, J.A. 1983. The regeneration of skeletal muscle fibers following injury: a review. Med Sci Sports Exerc 15:187–96.

    Article  PubMed  CAS  Google Scholar 

  • Chambers, R.L. and McDermott, J.C. 1996. Molecular basis of skeletal muscle regeneration. Can J Appl Physiol 21(3):155–84.

    Article  PubMed  CAS  Google Scholar 

  • Clark, K.R., Sferra, T.J., and Johnson, P.R. 1997. Recombinant adeno-associated viral vectors mediate long term transgene expression in muscle. Hum Gene Ther 8:659–69.

    Article  PubMed  CAS  Google Scholar 

  • Crisco, J.J., Jolk, P., Heinen, G.T., Connell, M.D., and Panjabi, M.M. 1994. A muscle contusion injury model, biomechanics, physiology and histology. Am J Sports Med 15:9–14.

    Google Scholar 

  • Day, C.S., Moreland, M., Floyd, S., and Huard, J. 1997. Limb lengthening promotes muscle growth. J Orthop Res 15:227–34.

    Article  PubMed  CAS  Google Scholar 

  • DiMario, J., Buffinger, N., Yamanda, S., and Strohman R.C. 1989. Fibroblast growth factor in the extracellular matrix of dystrophic (mdx) mouse muscle. Science 244(4905):688–90.

    Article  PubMed  CAS  Google Scholar 

  • Dunckley, M.G., Wells, D.J., Walsh, F.S., and Dickson, G. 1993. Direct retroviral mediated transfer of a dystrophin minigene into mdx mouse muscle in vivo. Hum Mol Gen 2:717–23.

    Article  PubMed  CAS  Google Scholar 

  • Ewton, D.Z. and Florini, J.R. 1980. Relative effects of somatomedins, multiplication stimulating activity, and growth hormone on myoblasts and myotubes in culture. Endocrinology 106:583.

    Article  Google Scholar 

  • Fisher, K.J., Jooss, K., Alston, J., Yang, Y., Haecker, S.E., High, K., Pathak, R., Raper, S.E., and Wilson, J.M. 1997. Recombinant adeno-associated virus for muscle directed gene therapy. Nature Medicine 3:306–12.

    Article  PubMed  CAS  Google Scholar 

  • Florini, J.R., Ewton, D.Z., and Roof, S.L. 1991. Insulin-like growth factor-1 stimulates terminal myogenic differentiation by induction of myogenin gene expression. Mol Endocrinol 5:718.

    Article  PubMed  CAS  Google Scholar 

  • Florini, J.R. and Magri, K. 1989. Effect of growth factors on myoblast differentiation. Am J Physiol 256:701–11.

    Google Scholar 

  • Floyd Jr., S.S., Booth II, D.K., van Deutekom, J.C.T., Day, C.S., and Huard, J. 1997. Autologous myoblast transfer: A combination of myoblast transplantation and gene therapy. Basic Appl Myol 7(3, 4):241–50.

    Google Scholar 

  • Floyd, S.S., Clemens, P.R., Ontell, M.R., Kochanek, S., Day, C.S., Yang, J., Hauschka, S.D., Balkir, L., Morgan, J.E., Moreland, M.S., Feero, W.G., Epperly, M., and Huard, J. 1998. Ex vivo gene transfer using adenovirus mediated full length dystrophin delivery to mature dystrophic muscles. Gene Ther 5:19–30.

    Article  PubMed  CAS  Google Scholar 

  • Garrett Jr., W.E. 1990. Muscle strain injuries: clinical and basic aspects. Med Sci Sports Exerc 22:436–43.

    PubMed  Google Scholar 

  • Garrett Jr., W.E., Saeber, A.V., Boswick, J., Urbaniak, J.R., and Goldner, L. 1984. Recovery of a skeletal muscle after laceration and repair. J Hand Surg 9A: 683–92.

    Google Scholar 

  • Gospodarowicz, D., Ferrara, N., Schweigerer, L., and Neufeld, G. 1987. Structural characterization and biological functions of fibroblast growth factor. Endocrinol Rev 8:95–114.

    Article  CAS  Google Scholar 

  • Grounds, M.D. 1991. Towards understanding skeletal muscle regeneration. Path Res Pract 187:1–22.

    PubMed  CAS  Google Scholar 

  • Huard, J., Acsadi, G., Jani, A., Massie, B., and Karpati, G. 1994. Gene transfer into skeletal muscles by isogenic myoblasts. Hum Gene Ther 5:949–58.

    Article  PubMed  CAS  Google Scholar 

  • Huard, J., Goins, W.F., and Glorioso, S.C. 1995. Herpes simplex virus type I vector mediated gene transfer to muscle. Gene Ther 2:385–92.

    PubMed  CAS  Google Scholar 

  • Huard, J., Akkaraju, G., Watkins, S.C., Cavalcoli, M.P., and Glorioso, J.C. 1996. Persistent LacZ expression in skeletal muscle of immunodeficient (SCID) mice mediated by highly defective Herpes simplex virus type 1 vector. Hum Gene Ther 8:439–52.

    Article  Google Scholar 

  • Huard, J., Goins, B., and Glorioso, J.C. 1995. Herpes simplex virus type 1 vector mediated gene transfer to muscle. Gene Ther 2:1–9.

    Google Scholar 

  • Huard, J., Guerette, B., Verreault, S., Tremblay, G., Roy, R., and Tremblay, J.P. 1994. Human myoblast transplantation in immunodeficient and immunosuppressed mice: evidence of rejection. Muscle Nerve 17:224–34.

    Article  PubMed  CAS  Google Scholar 

  • Huard, J., Lochmueller, H., Acsadi, G., Jani, A., Massie, B., and Karpati, G. 1995. The route of administration is a major determinant of the transduction efficiency of rats tissue by adenoviral recombinants. Gene Ther 2:107–15.

    PubMed  CAS  Google Scholar 

  • Huard, J., Lochmueller, H., Jani, A., Holland, P., Guerin, C., Massie, B., and Karpati, G. 1995. Differential short term transduction efficiency of adult versus newborn mouse tissues by adenoviral recombinants. Exp Mol Pathol 62:131–43.

    Article  PubMed  CAS  Google Scholar 

  • Huard, J., Verreault, S., Roy, R., Tremblay, M., and Tremblay, J.P. 1994. High efficiency of muscle regeneration following human myoblast clone transplantation in SCID mice. J Clin Invest 93:586–99.

    Article  PubMed  CAS  Google Scholar 

  • Hurme, T. and Kalimo, H. 1992. Activation of myogenic precursor cells after muscle injury. Med Sci Sports Exerc 24:197–205.

    PubMed  CAS  Google Scholar 

  • Hurme, T., Kalimo, H., Lehto, M., and Jarvinen, M. 1991. Healing of skeletal muscle injury. An ultrastructural and immunohistochemical study. Med Sci Sports Exerc 23:801–10.

    PubMed  CAS  Google Scholar 

  • Hurme, T., Kalimo, H., Sandberg, M., Lehto, M., and Vuorio, E. 1991. Localization of type I and III collagen and fibronectin production in injured gastrocnemius muscle. Laboratory Investigation 64:76–84.

    PubMed  CAS  Google Scholar 

  • Jarvinen, M. and Sorvari, T. 1975. Healing of a crush injury in rat striated muscle. Acta Path Microbiol Scand 83A:259–65.

    Google Scholar 

  • Jennische, E. 1989. Sequential immunohistochemical expression of IGF-1 and the transferrin receptor in regenerating rat muscle in vivo. Acta Endocrinol 121:733–8.

    PubMed  CAS  Google Scholar 

  • Jennische, E. and Hansson, H.A. 1987. Regenerating skeletal muscle cells express insulin-like growth factor 1. Acta Physiol Scand 130:327–32.

    Article  PubMed  CAS  Google Scholar 

  • Kalimo, H., Rantanen, J., and Jarvinen, M. 1997. Muscle injuries in sports. Balliere’s Clin Orthop 2, 1:1–24.

    Google Scholar 

  • Kardami, E., Spector, D., and Strohman, R.C. 1985. Selected muscle and nerve extracts contain an activity which stimulates myoblast proliferation and which is distinct from transferrin. Dev Biol 112:353–8.

    Article  PubMed  CAS  Google Scholar 

  • Kasemkijwattana, C., Ménétrey, J., Somogi, G., Moreland, M.S., Fu, F.H., Buranapanitkit, B., Watkins, S.C., and Huard, J. 1998. Development of approaches to improve the healing following muscle contusion. Cell Trans 7(6):585–98.

    Article  CAS  Google Scholar 

  • Katsumi, A., Emi, N., Abe, A., et al. 1994. Humoral and cellular immunity to an encoded protein induced by direct DNA injection. Hum Gene Ther 5:1335–9.

    Article  PubMed  CAS  Google Scholar 

  • Lattermann, C., Baltzer, A.W.A., Whalen, J.D., et al. 1998. Gene therapy in sports medicine. Sports Med Arthrose Rev 6:83–8.

    Google Scholar 

  • Lefaucheur, J.P. and Sebille, A. 1995. Muscle regeneration following injury can be modified in vivo by immune neutralization of basic-fibroblast growth factor, transforming growth factor 1 or insulin-like growth factor 1. J Neuroimmunol 57:85–91.

    Article  PubMed  CAS  Google Scholar 

  • Lehto, M. and Jarvinen, M. 1991. Muscle injuries healing and treatment. Annales Chirurgiciae et Gynaecologiae 80:102–9.

    CAS  Google Scholar 

  • Lehto, M., Duance, V.J., and Restall, D. 1985. Collagen and fibronectin in a healing skeletal muscle injury. An immunohistochemical study of the effects of physical activity on the repair of the injured gastrocnemius muscle in the rat. J Bone Joint Surg 67:820–8.

    CAS  Google Scholar 

  • Ménétrey, J., Kasemkijwattana, C., and Day, C.S. 1998. Characterization of trophic factors to promote muscle growth. Trans Orthop Research Soc 44:166.

    Google Scholar 

  • Ménétrey, J., Kasemkijwattana, C., Fu, F.H., Moreland, M.S., and Huard, J. 1999. Suturing versus immobilization of a muscle laceration: a morphological and functional study. Am J Sports Med 27(2):222–9.

    PubMed  Google Scholar 

  • Mishra, D.K., Friden, J., Schmitz, M.C., and Lieber, R.L. 1995. Antiinflammatory medication after muscle injury. A treatment resulting in short-term improvement but subsequent loss of muscle function. J Bone Joint Surg 77A:1510–19.

    Google Scholar 

  • Mubarak, S. and Hargens, A.R. 1981. Compartment syndromes and Volksmann’s contracture. 106–18. Philadelphia: WB Saunders.

    Google Scholar 

  • Nikolaou, P.K., MacDonald, B.L., Glisson, R.R., Seaber, A.V., and Garrett, W.E. 1987. Biomechanical and histological evaluation of muscle after controlled strain injury. Am J Sports Med 15:9–14.

    Article  PubMed  CAS  Google Scholar 

  • Partridge, T.A. 1991. Myoblast transfer: a possible therapy for inherited myopathies. Muscle Nerve 14:197–212.

    Article  PubMed  CAS  Google Scholar 

  • Reed-Clark, K., Sferra, T.J., and Johnson, P.R. 1997. Recombinant adeno-associated virus vectors mediate long term transgene expression in muscle. Hum Gene Ther 8:659–69.

    Article  Google Scholar 

  • Salvatori, G., Ferrari, G., Messogiorno, A., Servidel, S., Colette, M., Tonalli, P., Giarassi, R., Cosso, G., and Mavillo, F 1993. Retroviral vector mediated gene transfer into human primary myogenic cells lead to expression in muscle fibers in vivo. Hum Gene Ther 4:713–23.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, E. 1989. Satellite cell behavior during skeletal muscle growth and regeneration. Med Sci Sports Exerc 21:181.

    Google Scholar 

  • Schultz, E., Jaryszak, D.L., and Valliere, C.R. 1985. Response of satellite cells to focal skeletal muscle injury. Muscle Nerve 8:217.

    Article  PubMed  CAS  Google Scholar 

  • Trippel, S.B., Coutts, R.D., and Einhorn, T., et al. 1996. Growth factors as therapeutic agents. J Bone Joint Surg 78-A:1272–86.

    Google Scholar 

  • Wolfe, J.A., Ludkte, J.J., and Acsadi, G., et al. 1992. Long term persistence of plasmid DNA and foreign gene expression in mouse muscle. Hum Mol Gene 1:363–9.

    Article  Google Scholar 

  • Xiao, X., Li, J., and Samulski, R.J. 1996. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 70:8098–108.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Birkhäuser Boston

About this chapter

Cite this chapter

Ménétrey, J. et al. (2000). The Development of Approaches Based on Gene Therapy to Improve Muscle Healing Following Injury. In: Huard, J., Fu, F.H. (eds) Gene Therapy and Tissue Engineering in Orthopaedic and Sports Medicine. Methods in Bioengineering. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2126-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2126-5_5

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7424-7

  • Online ISBN: 978-1-4612-2126-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics