Skip to main content

Part of the book series: Graduate Texts in Contemporary Physics ((GTCP))

  • 561 Accesses

Abstract

Composite materials may be considered as materials made of two or more components and consisting of two or more phases in the solid state. The importance of polymer composite [1] originates largely because such low-density materials can have unusual high elastic constants and tensile strength. For the most part, the tensile properties have been adequately dealt with by using the theory of elasticity. With new demands for materials to survive in a severe environment of high temperature, compression, and shear rate, deformation from elasticity to viscoelasticity and to plasticity becomes important as the loading and environmental conditions vary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Sedlacek (Ed.), Polymer Composites (Walter de Gruyter, Berlin, 1986).

    Google Scholar 

  2. J. E. Ashton, J. C. Halpin, and P. H. Petit, Primer on Composite Materials: Analysis (Technomic, Stanford, CT, 1969).

    Google Scholar 

  3. J. L. Kardos, Crit. Rev. Solid State Sci. 3, 417 (1973).

    Article  Google Scholar 

  4. J. D. Eshelby, Proc. R. Soc. (London) A 241, 376 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. J. D. Eshelby, Proc. R. Soc. (London) A 252, 561 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. L. D. Landau and E. M. Lifshitz, Theory of Elasticity (Pergamon, Oxford, 1959).

    Google Scholar 

  7. T. S. Chow, J. Polym. Sci.: Poym. Phys. Ed. 16, 959, (1978).

    Article  ADS  Google Scholar 

  8. T. S. Chow, J. Polym. Sci.: Poym. Phys. Ed. 16, 967 (1978).

    Article  ADS  Google Scholar 

  9. E. H. Kerner, Proc. Phys. Soc. 69B, 808 (1956).

    ADS  Google Scholar 

  10. W. T. Mead and R. S. Porter, J. Appl. Phys. 47, 4278 (1976).

    Article  ADS  Google Scholar 

  11. T. S. Chow, J. Mater. Sci. 15, 1873 (1980).

    Article  ADS  Google Scholar 

  12. H. L. Cox, British. J. Appl. Phys. 3, 72 (1952).

    Article  ADS  Google Scholar 

  13. I. Holiday and J. Robinson, J. Mater. Sci. 8, 301 (1973).

    Article  ADS  Google Scholar 

  14. J. N. Goodier, J. Appl. Mech. 1, 39 (1933).

    Google Scholar 

  15. O. Ishai and L. J. Cohen, J. Composite Mater. 2, 302 (1968).

    Article  Google Scholar 

  16. T. S. Chow, Polymer 32, 29 (1991)

    Article  Google Scholar 

  17. D. R. Paul and S. Newman (Ed.), Polymer Blends, vol. 1 (Academic, New York, 1978).

    Google Scholar 

  18. P. Zoller and H. H, Hoehn, J. Polym. Sci.: Polym. Phys. Ed. 20, 1385 (1982).

    Article  ADS  Google Scholar 

  19. W. M. Prest, Jr., and R. S. Porter, J. Polym. Sci.: Polym. Phys. Ed. 10, 1639 (1972).

    ADS  Google Scholar 

  20. R. P. Kambour and S. A. Smith, J. Polym. Sci.: Polym. Phys. Ed. 20, 2069 (1982).

    Article  ADS  Google Scholar 

  21. J. R. Fried, W. J. Macknight, and F. E. Karasz, J. Appl. Phys. 50, 6052 (1979).

    Article  ADS  Google Scholar 

  22. T. S. Chow, Macromolecules 23, 4648 (1990).

    Article  ADS  Google Scholar 

  23. T. S. Chow, Macromolecules 13, 362 (1980).

    Article  ADS  Google Scholar 

  24. E. Jenckel and R. Heusch, Kolloid-Z 130, 80 (1953).

    Google Scholar 

  25. J. H. Weiner, Statistical Mechanics of Elasticity (Wiley, New York, 1983).

    MATH  Google Scholar 

  26. T. S. Chow, Macromolecules 26, 5049 (1993).

    Article  ADS  Google Scholar 

  27. N. L. Salmen and E. L. Back, Tappi 63, 117 (1980).

    Google Scholar 

  28. D. E. Gray (Ed.), American Institute of Physics Handbook, 2nd ed. (McGraw-Hill, New York, 1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Chow, T.S. (2000). Polymer Composites. In: Mesoscopic Physics of Complex Materials. Graduate Texts in Contemporary Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2108-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2108-1_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7417-9

  • Online ISBN: 978-1-4612-2108-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics