Glassy—State Relaxation

  • T. S. Chow
Part of the Graduate Texts in Contemporary Physics book series (GTCP)


Amorphous solids are not in thermodynamic equilibrium. The experiment of volume relaxation below the glass transition temperature has revealed that the glassy states are indeed changing slowly with time and temperature [1,2]. The glassy-state relaxation is a result of the local configuration rearrangement of molecular segments, and the dynamic of holes (free volumes) provides a quantitative description of segmental mobility. On the basis of the statistical dynamics of hole motion, a unified physical picture emerges that enables us to discuss the structural relaxation, physical aging, and glassy-state deformation (see Chapter 6). The physics of glassy polymers is still evolving, and the functional relationships between relaxation and deformation have not been firmly established. Significant progress, however, has already been made that can be used in solving many important problems in this area.


Free Volume Glassy State Isothermal Annealing Relaxation Function Glassy Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. H. Howard (Ed.), Physics of Glassy Polymers (Wiley, New York, 1973).Google Scholar
  2. 2.
    A. J. Kovacs, Adv. Poly. Sci. 3, 397 (1963).Google Scholar
  3. 3.
    T. S. Chow, Macromolecules 17, 2336 (1984).ADSCrossRefGoogle Scholar
  4. 4.
    T. S. Chow, Macromol. Theory Simul. 4, 397 (1995).CrossRefGoogle Scholar
  5. 5.
    Q. Deng, F. Zandiehnadem, and Y. C. Jean, Macromolecules 25, 1090 (1992).ADSCrossRefGoogle Scholar
  6. 6.
    T. S. Chow, Macromolecules 22, 701 (1989).ADSCrossRefGoogle Scholar
  7. 7.
    T. S. Chow, Phys. Rev. A 44, 6916 (1991).ADSCrossRefGoogle Scholar
  8. 8.
    B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982).MATHGoogle Scholar
  9. 9.
    A. J. Kovacs, J. J. Aklonis, J. M. Hutchinson, and A. R. Ramos, J. Polym. Sci., Polym. Phys. Ed. 17, 1097 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    S. K. Ma, Statistical Mechanics (World Scientific, Philadelphia, 1985).MATHGoogle Scholar
  11. 11.
    R. Kohlrausch, Ann. Phys. 21, 393 (1847).Google Scholar
  12. 12.
    G. Williams and D. C. Watts, Trans. Faraday Soc. 66, 80 (1970).CrossRefGoogle Scholar
  13. 13.
    A. K. Doolittle, J. Appi. Phys. 22, 1471 (1951).ADSCrossRefGoogle Scholar
  14. 14.
    M. L. Williams, R. F. Landel, and J. D. Ferry, J. Am. Chem. Soc. 77, 2701 (1955).CrossRefGoogle Scholar
  15. 15.
    J. E. McKinney and M. Goldstein, J. Res. Nat. Bur. Standards 78A, 331 (1974).Google Scholar
  16. 16.
    T. S. Chow, J. Rheol. 30, 729 (1986).ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2000

Authors and Affiliations

  • T. S. Chow
    • 1
  1. 1.Xerox Research and TechnologyWebsterUSA

Personalised recommendations