Skip to main content

Abstract

Sections VIII and IX of this book differ from the previous sections in that they are tied more closely to applied research, especially as related to rehabilitation. This seems appropriate. When addressing the significance of our work, most of us include a statement that our research will ultimately help enhance the quality of life of certain types of persons with disabilities. Often the motivation behind our claim is that the increased knowledge obtained from our collective basic research will ultimately lead to technological or therapeutic innovation that will benefit society. This concept has deep roots that go back to the influential writings of Vannevar Bush, a U.S. presidential science adviser during the 1940s, who helped spawn dramatic increases in government-sponsored research infrastructure (e.g., the creation of NSF and NIH), and subsequently in the number of research-oriented scientists and engineers within most developed societies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allard, P., Stokes, I.A.F., and Blanchi, J-P. (eds.) (1995). Three-Dimensional Analysis of Human Movement. Human Kinetics, Champaign.

    Google Scholar 

  • Allen, J.R., Karchak, A., and Nickel, V.L. (1970). Orthotic Manipulators. In Advances in External Control of Human Extremities. Belgrade.

    Google Scholar 

  • Ascension Technology. (1995). Flock of birds user’s manual.

    Google Scholar 

  • Barter, J.T. (1957). Estimation of the mass of body segments. WADC Techn. Report 57–260, Wright-Pattern A.F.B., Aero. Med. Lab., Ohio.

    Google Scholar 

  • Barto, A.G., Sutton, R.S., and Watkins, C.J.C.H. (1983). Neuronlike elements that can solve difficult learning control problems. IEEE Trans. Sys. Man Cybern., 13:835–846.

    Google Scholar 

  • Bernstein, N.A. (1935). Biodynamics of walking of normal adult man. Moscow, Orignal in Russian, partial translation be B. Bresler, Prosthetics Devices Research Project, University of California, Berkeley, 1947.

    Google Scholar 

  • Birch et al., G.E. (1996). An assessment methodology and its application to a robotic vocational assistive device. Tech. Disabil., 5:151–166.

    Article  Google Scholar 

  • Bogner, M.S. (ed.). (1994). Human error in medicine. Lawrence Erlbaum Associates. Hillsdale, New Jersey.

    Google Scholar 

  • Braune, W. and Fischer, O. (1895). Versuche am unbelasteten und belasteten Menschen. Vol. 21, pp. 151–324.

    Google Scholar 

  • Bresler, B. and Frankel, J.P. (1950). The forces and moments in the leg during level walking. Trans. ASME, 72:27–36.

    Google Scholar 

  • Bresler, B., Radcliffe, C.W., and Berry, F.R. (1957). Energy and power in the legs of above-knee amputees during normal level walking. Inst. Eng. Res., University of California, Berkeley, Series 11, issue 31, pp. 26.

    Google Scholar 

  • Budde, J.P. (1990). Independent living centers: a parallel resource. In Rehabilitation Engineering. Smith, R.V. and Leslie, J.H. (eds). CRC Press, Boca Raton.

    Google Scholar 

  • Burdea, G. and Coiffet, P. (1994). Virtual Reality Technology, John Wiley & Sons, New York.

    Google Scholar 

  • Caldwell, D.G. (1993). Natural and artificial muscle elements as robot actuators. Mechatronics, 3:269–283.

    Article  Google Scholar 

  • Card, S., Moran, T., and Newell, A. (1983). The psychology of human-computer interaction. Lawrence Erlbaum Associates, Hillsdale, New Jersey.

    Google Scholar 

  • Card, S., Moran, T., and Newell, A. (1986). The model human processor. In Handbook of Perception and Human Performance. Boff, K., Kaufman, L., and Thomas, J. (eds.), vol 2. John Wiley & Sons, New York.

    Google Scholar 

  • Carlet, M.G. (1872). Essai experimental sur la locomotion humaine. Annales des Sciences Naturelles, Section Zoologique, Series 5, 16:1–93.

    Google Scholar 

  • Chen, S., Harwin, W., and Rahman, T. (1994). The application of discrete-time adaptive impedance control to rehabilitation robot manipulators. Proc. of IEEE Int’l Conf on Robotics and Automation, San Diego, May.

    Google Scholar 

  • Childress, D.S. (1985). Historical aspects of powered upper-limb prostheses. Clin. Prosth. Orthotics., 9:2–13.

    Google Scholar 

  • Christensen, J.M., Topmiller, D.A., and Gill, R.T. (1988). Human factors definitions revisited. Human Factors Society Bulletin, 31, pp. 7–8.

    Google Scholar 

  • Clark, M. and Stark, L. (1975). Time optimal behavior of human saccadic eye movement. IEEE Trans. Autom. Control AC-20:345–348.

    Article  Google Scholar 

  • Cook, A.M. and Hussey, S.M. (1995). Assistive technologies: principles and practice. Mosby, St. Louis.

    Google Scholar 

  • Cunningham, D.M. (1950). Components of floor reactions during walking. Prosthetic Devices Research Project, Inst. Eng. Res., University of California, Berkeley, Series 11, issue 14.

    Google Scholar 

  • Cummingham, D.M. and Brown, G.W. (1952). Two devices for measuring the forces acting on the human body during walking. Proc. Soc. Exp. Stress Analysis, 9:75–90.

    Google Scholar 

  • Cyberedge Journal (1993). Product of the year. Sausolito, California, March/April, pp. 3–5.

    Google Scholar 

  • Davies, A.R., Doyle, M.A., Lansky, D., Rutt, W., Stevic, M.O., and Doyle, J.B. (1994). Outcomes assessment in clinical settings: a consensus statement on principles and best practices in project management. The Joint Commission on Accreditation of Healthcare Organizations, pp. 6–16.

    Google Scholar 

  • Dempster, W.T. (1955). Space requirements of the seated operator. WADC Techn. Report 55–159, Wright-Patterson A.F.B., Ohio.

    Google Scholar 

  • Doubler, J.A. and Childress, D.S. (1984). An analysis of a prosthesis control system based on the concept of extended physiological proprioception. J. Rehab. Res. Dev., 21:1–18.

    Google Scholar 

  • Downton, A. (ed). (1991). Engineering the Human-computer Interface. McGraw-Hill, London.

    Google Scholar 

  • Evans, M. (1988). MAGPIE—a lower-limb-operated manipulator. Engng. Med., 17:81.

    Article  Google Scholar 

  • Fee, J. et al. (1995). The consumer innovation laboratory: an exercise in consumer empowerment. RESNA Proceedings, 15: 502–504. Vancouver, June.

    Google Scholar 

  • Fitts, P.M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psych., 47:381–391.

    Article  CAS  Google Scholar 

  • Franier, R., Groleau, N., Hazerlton, L., Colombano, S., Compton, M., Statler, I., Szolovits, P., and Young, L. et al. (1994). PI-in-a-box: a knowledge-based system for space science experimentation. AI Magazine, pp. 39–51.

    Google Scholar 

  • Galvin, J. (1991). The history of rehabilitation engineering. Assistive Technol.

    Google Scholar 

  • Gavrilovic, M.M. and Maric, M.R. (1969). Positional servo-mechanism activation by artificial muscles. Med. Biol Eng., 7:77–82.

    Article  PubMed  CAS  Google Scholar 

  • General Reality Inc. (1996). Product catalog.

    Google Scholar 

  • Glanville, A.D. and Kreezer, G. (1937). The characteristics of gait of normal male adults. J. Exp. Psychol., 21:277–301.

    Article  Google Scholar 

  • Granger, C.V. and Brownscheidle, C.M. (1995). Outcome measurement in medical rehabilitation. Int. J. Technol. Assess. Health Care, 11:262–268.

    Article  PubMed  CAS  Google Scholar 

  • Groleau, N. (1994). ASSET: automation and support system for expert tele-sciences. Techn. Descrip. Doc., M/S 269-2, Artif. Intel. Res. Branch, NASA-AMES Research Center, Moffett Field.

    Google Scholar 

  • Hannaford, B. and Winters, J.M. (1990). Actuator properties and movement control: biological and technological models. In Multiple Muscle Systems. Winters, J.M. and Woo, S.L-Y. (eds.), pp. 101–120. Springer-Verlag, New York.

    Google Scholar 

  • Hannaford, B., Winters, J.M., Chou, C-P., and Marbot, P-H. (1995). The anthroform biorobotic arm: a system for the study of spinal circuits. Ann. Biomed. Eng., 23:359–374.

    Article  Google Scholar 

  • Heckathorne, C.W. (1990). Manipulation in unstructured environments: extended physiological proprioception, position control, and arm prostheses. Proc. Int. Conf. Rehab. Robotics, pp. 25–40. Wilmington.

    Google Scholar 

  • Hodges, L.F., Bolter, J., Mynatt, E., Ribarsky, W., and van Teylingen, R. (1993). Virtual environment research at the Georgia Tech GVU Center. Presence, 2(3):234–243.

    Google Scholar 

  • Hogan, N. (1984). Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans. Autom. Control, AC-29:681–690.

    Article  Google Scholar 

  • Hogan, N. (1990). Mechanical impedance of single- and multi-articular systems. In Multiple Muscle Systems. (Winters, J.M. and Woo, S.L-Y. (eds.), pp. 149–164. Springer-Verlag, New York.

    Google Scholar 

  • Hogan, N. and Winters, J.M. (1990). Principles underlying movement organization: upper limb. In Multiple Muscle Systems. Winters, J.M. and Woo, S.L-Y. (eds.), pp. 182–194. Springer-Verlag, New York.

    Google Scholar 

  • Howell, R., et al. (1996). Classroom applications of educational robots for inclusive teams of students with and without disabilities. Technol. Disabil., 5:139–150.

    Article  Google Scholar 

  • Inman, V.T., Ralston, H.J., Saunders, J.B., Feinstein, B., and Wright, E.W. (1952). Relation of human electromyogram to muscular tension. Electroenceph. Clin. Neurophysiol., 4:187–194.

    Article  PubMed  CAS  Google Scholar 

  • Innman, V. T., Saunders, J.B., and Abbot, L.C. (1944). Observations on the function of the shoulder joint. J. Bone Joint Surg., 26-A:1–30.

    Google Scholar 

  • Johnston, R.S. (1987). The SIMNET visual system, Proc. Ninth ITEC Conf., pp. 264–273. Washington, DC.

    Google Scholar 

  • Kazi, Z. et al. (1996). Multimodally controlled intelligent assistive robot. RESNA Proc., vol. 16, pp. 348–350. Salt Lake City, June.

    Google Scholar 

  • Kijima, R., Shirakawa, K., Hirose, M., and Nihei, K. (1994). Virtual sand box: development of an application of virtual environments in clinical medicine. Presence, 3(1):45–59.

    Google Scholar 

  • Kroemer, K., Kroemer, H., Kroemer-Elbert, K. (1994). Ergonomics. Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Kruit, J. and Cool, J.C. (1989). Body-powered hand prosthesis with low operating power for children. J. Med. Eng. & Technol., 13:129–133.

    Article  CAS  Google Scholar 

  • LeBlanc, M.A. (1987).

    Google Scholar 

  • Lamoreux, L.W. (1971). Kinematic measurements in the study of human walking. Bull. Prosthetic Res., BPR 10–15, pp. 3–84.

    Google Scholar 

  • Lamson, R.J. (1995). Clinical application of virtual therapy to psychiatric disorders. Virtual Reality and Persons with Disabilities. San Fransisco.

    Google Scholar 

  • Levins, A.S., Inman, V.T., and Blosser, J.A. (1948). Transverse rotation of the segments of the lower extremity in locomotion. J. Bone Joint Surg., 30-A:859–872.

    Google Scholar 

  • Lin, C-T. and Lee, SC.S.G. (1996). Neural fuzzy systems. A neuro-fuzzy synergism to intelligent systems. Prentice Hall, Upper Saddle River, New Jersey.

    Google Scholar 

  • Liu, A., Tharp, G., French, L., Lai, S., and Stark, L. (1993). Some of what oneneeds to know about using head-mounted displays to improve teleoperator performance. IEEE Trans Robotics Auto., 9:638–648.

    Article  Google Scholar 

  • Marquardt, E. (1961). Biomechanical control of pneumatic prostheses with special consideration of the sequential control. In Application of External Power in Prosthetics and Orthotics. Publ. 874, NAS-RC, pp. 20–31.

    Google Scholar 

  • Mason, C.P. and E. Peiser. (1979). A seven degree of freedom telemanipulator for tetraplegics. Conf. Int. sur les Telemanipulators pour Handicapes Physiques, pp. 309–318.

    Google Scholar 

  • McDonough, J. (1993). Doorways to the virtual battlefield. Proc. Virtual Reality,’92, 104–114.

    Google Scholar 

  • Michael, J. (1986). Upper limb powered components and control: current concepts. Clin. Prosth. Orthotics, 10:66–77.

    Google Scholar 

  • Monheit, G. and N. Badler (1991). A kinematic model of the human spine and torso. IEEE Comput. Graphics Appl., Noton, D. and Stark, L. (1971). 11(2):29–38, 1991.

    Google Scholar 

  • NASA (1993). Virtual Technology for Training. Technical Report. Johnson Space Center, Houston, Texas.

    Google Scholar 

  • Norman, D. (1988). The design of everyday things.

    Google Scholar 

  • Paeslack, V. and Roesler, H. (1977). Design and control of a manipulator for tetraplegics. Mech. Machine Theory, 12:413–423.

    Article  Google Scholar 

  • Phillips, B. and Chao, (1994).

    Google Scholar 

  • Pieper, S., Rosen, J., and Zeltzer, D. (1992). Interactive graphics for plastic surgery: a task-level analysis and implementation. In Proceedings of the 1992 Symposium on Interactive 3D Graphics, Zeltzer, D., Catmull, E., and Levoy, M. (eds.), pp. 127–134. New York.

    Chapter  Google Scholar 

  • Plettenburg, D.H. (1989). Electric versus pneumatic power in hand prostheses for children. J. Med. Eng. Technol., 13:124–128.

    Article  PubMed  CAS  Google Scholar 

  • Prior, S.D., Warner, P.R., White, A.S., Parsons, J.T., and Gill, R. (1993). Actuators for rehabilitation robots. Mechatronics, 3:285–294.

    Article  Google Scholar 

  • Radcliffe, C.W. (1960). Human engineering: mechanisms for amputees. Machine Design, 32:24–28.

    Google Scholar 

  • Rahman, T. et al. (1996). Task priorities and design of an arm orthosis. Technol. Disabil., 5:197–204.

    Article  Google Scholar 

  • Ralston, H.J. (1953). Mechanics of voluntary muscle. Amer. J. Phys. Med., 32:166–184.

    PubMed  CAS  Google Scholar 

  • Reddy, N.P., Sukthankar, S.M., and Gupta, V. (1994). Virtual reality in rehabilitation. IEEE-EMBS Workshop on Rehabil. Eng. Baltimore.

    Google Scholar 

  • Rosen, J.M. (1994). VR and surgery: from simulation to performing complex procedures. Virtual Reality and Medicine- The Cutting Edge. New York.

    Google Scholar 

  • Sanders, M.S. and McCormick, E.J. (1993). Human factors in Engineering and Design. McGraw-Hill, New York.

    Google Scholar 

  • Schulte, R.A. (1961). The characteristics of the McKibben artificial muscle. In Application of External Power in Prosthetics and Orthotics, Publ. 874, NASRC, pp. 94–115.

    Google Scholar 

  • Schuyler, J. and Mahoney, R. (1995). Vocational robotics: job identification and analysis. RESNA Proc., 15:542–544. Vancouver.

    Google Scholar 

  • Seamone, W. and Schmeisser, G. (1985). Early clinical evaluation of a robot arm/worktable system for spinal-cord-injured persons. J. Rehabil. Res. Dev., pp. 38–57.

    Google Scholar 

  • Sheredos, S.J. et al. (1996). Preliminary evaluation of the helping hand electro-mechanical arm. Technol. Disabil., 5:229–232.

    Article  Google Scholar 

  • Sheridan, T.B. and Ferrell, W.R. Man-Machine Systems: Information, Control, and Decision Models of Human Performance. The MIT Press, Cambridge.

    Google Scholar 

  • Simpson, D.C. (1974). The choice of control system for the multimovement prosthesis: extended physiological proprioception (e.p.p.). The Control of Upper Extremity Prostheses and Orthoses. Herberts, P. et al. (eds.), pp. 146–150. Charles C. Thomas, New York.

    Google Scholar 

  • Simpson, D.C. and Smith, J.G. (1977). An externally powered controlled complete arm prosthesis. J. Med. Eng. Tech., pp. 275–277.

    Google Scholar 

  • Stark, L. (1968). Neurological Control Systems. Plenum Press, New York.

    Google Scholar 

  • Stark, L. and Ellis, S.R. (1983). Scanpaths revisited: cognitive models direct active looking. In Eye Movements: Congnition and Visual Perception. Fisher, D.F. et al. (eds.). Lawrence Erbaum Assoc.

    Google Scholar 

  • Stroud, S. et al. (1996). A body powered rehabilitation robot. RESNA Proc., 16:363–365. Salt Lake City.

    Google Scholar 

  • Suh, C.H. and Radcliffe, C.W. (1967). Synthesis of spherical linkages with use of the displacment matrix. J. Eng. Ind., 89:215–222.

    Google Scholar 

  • Sukthankar, S.M. (1996). Virtual reality in rehabilitation, RESNA 1996 Mid-Atlantic Regional Conference. Philadelphia.

    Google Scholar 

  • Topping, M. (1996). Handy I, a robotic aid to independence for severely disabled people. Tech. Disabil., 5:233–234.

    Article  Google Scholar 

  • Upton, C. (1994). The RAID workstation. Rehab. Robotics Newsletter, A.I. duPont Institute, 6(1).

    Google Scholar 

    Google Scholar 

  • Van der Loos, H.F.M. (1995). VA/Stanford rehabilitation robotics research and development program: lessons learned in the application of robotics technology to the field of rehabilitation. IEEE Trans. Rehab. Eng., 3:46–55.

    Article  Google Scholar 

  • Verburg, G. et al. (1996). Manus: the evolution of an assistive technology. Technol. Disabil., 5:217–228.

    Article  Google Scholar 

  • Virtual Technologies (1995). CyberGlove User’s Manual.

    Google Scholar 

  • Weghorst, S., Prothero, J., and Furness, T. (1994). Virtual images in the treatment of Parkinson’s Disease akinesia. Medicine meets Virtual Reality II: Visionary Applications for Simulation, Visualization, and Robotics. pp. 244–246. Aligned Management Associates, San Diego.

    Google Scholar 

  • Welford, A.T. (1976). Ergonomics: where have we been and where are we going: I. Ergonomics, 19(3):275–286.

    Article  PubMed  CAS  Google Scholar 

  • Werbos, P. (1990). A menu of designs for reinforcement learning over time. In Neural Networks for Control. Miller et al., (eds.). The MIT Press.

    Google Scholar 

  • Wickens, C.D., and Baker, P. (1995). Cognitive issues in virtual reality. In Virtual Environments and Advanced Interface Design. Barfield, W. and Furness, T.A. III (eds.), pp. 514–541. Oxford University Press, New York.

    Google Scholar 

  • Winters, J.M. (1995a). How detailed should muscle models be to understand multi-joint movement coordination? Human Mov. Sci., 14:401–442.

    Article  Google Scholar 

  • Winters, J.M. (1995b). An improved muscle-reflex actuator for use in large-scale neuromusculoskeletal models. Annals Biomed. Eng., 23:359–374.

    Article  CAS  Google Scholar 

  • Winters, J.M. (1996). Intelligent synthesis of neuromusculoskeletal signals using fuzzy expert critics. SPIE Smart Sensing, Processing and Instrumentation: Smart Sensors and Actuators for Neural Prosthesis, Vol. 2718, pp. 456–468, San Diego.

    Google Scholar 

  • Winters, J.M. and Sagranichiny, E.S. (1994). Why braided pneumatic actuators in rehabilitation robotics? Principles, properties and suggested applications. 4 th Int. Conf. Rehab. Robotics, pp. 201–208, Wilmington.

    Google Scholar 

  • Young, L.R. and Stark, L. (1963). Variable feedback experiments testing a sampled data model for eye tracking movements. IEEE Trans. Human Factors Elec., HFE-4:38–51.

    Article  Google Scholar 

  • Zadah, L.A. (1994). Fuzzy logic, neural networks, and soft computing. Commun. ACM 37:77–84.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Winters, J.M., Lathan, C., Sukthankar, S., Pieters, T.M., Rahman, T. (2000). Human Performance and Rehabilitation Technologies. In: Winters, J.M., Crago, P.E. (eds) Biomechanics and Neural Control of Posture and Movement. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2104-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2104-3_38

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7415-5

  • Online ISBN: 978-1-4612-2104-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics