Fractal Analysis of Human Walking Rhythm

  • Jeffrey M. Hausdorff
  • C. K. Peng
  • Jeanne Y. Wei
  • Ary L. Goldberger
  • Ranu Jung


Under healthy conditions, the complex, multilevel locomotor system does a remarkable job of controlling an inherently unstable, multijoint system. During walking, the kinetics, kinematics and muscular activity of gait appear to remain relatively unchanged from one step to the next (Winter 1984; Patla 1985; Kadaba et al. 1989; Pailhous and Bonnard 1992). However, closer examination reveals small fluctuations in the gait pattern, even under stationary conditions (Gabell and Nayak 1984; Yamasaki, Sasaki and Torri 1991; Pailhous and Bonnard 1992). The goal of this chapter is to analyze these subtle step-to-step fluctuations in gait, specifically the duration of the gait cycle, in order to gain insight into the neural control of locomotion. Ultimately, this analysis should improve our understanding of the organization, regulation, and interactions of the entire locomotor system and might also prove clinically useful in the diagnosis and prognosis of gait disorders.


Elderly Subject Gait Speed Central Pattern Generator Detrended Fluctuation Analysis Original Time Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bassingthwaighte, J.B., Liebovitch, L.S., and West, B.J. (1994). Fractal Physiology. Oxford University Press, New York.Google Scholar
  2. Belair, J., Glass, L., van der Heider, U., and Milton, J., (eds.). (1995). Dynamical Disease: Mathematical Analysis of Human Illness. American Institute of Physics Press, New York.Google Scholar
  3. Beran, J. (1994). Statistics for Long-Memory Processes. Chapman and Hall.Google Scholar
  4. Cohen, A.H., Rossignol, S., and Grillner, S. (1988). Neural Control of Rhythmic Movements in Vertebrates. Wiley & Sons, New York.Google Scholar
  5. Collins, J.J. and Stewart, I. (1993). Hexapodal gaits and coupled nonliner oscillator models. Biol. Cybern., 68:287–298.CrossRefGoogle Scholar
  6. Cudkowicz, M. and Kowall, N.W. (1990). Degeneration of pyramidal projection neurons in Huntington’s disease cortex. Ann. Neurol., 27:200–204.PubMedCrossRefGoogle Scholar
  7. Dobbs, R.J., Lubel, D.D., Charlett, A., et al. (1992). Hypothesis: age-associated changes in gait represent, in part, a tendency towards parkinsonism. Age Ageing, 21:221–225.PubMedCrossRefGoogle Scholar
  8. Feder, J. (1988). Fractals. Plenum Press, New York.Google Scholar
  9. Gabell, A. and Nayak, U.S.L. (1984). The effect of age on variability in gait. J. Gerontol., 39:662–666.PubMedGoogle Scholar
  10. Gillespie, D.T. (1992). Markov processes: an introduction for physical scientists. Academic Press, Boston.Google Scholar
  11. Hausdorff, J.M., Ladin, Z., and Wei, J.Y. (1995). Footswitch system for measurement of the temporal parameters of gait. J. Biomech., 28:347–351.PubMedCrossRefGoogle Scholar
  12. Hausdorff, J.M., Mitchell, S.L., Firtion, R., et al. (1997). Altered fractal dynamics of gait: reduced stride interval correlations with aging and Huntington’s disease. J. Appl. Physiol., 82:262–269.PubMedGoogle Scholar
  13. Hausdorff, J.M., Peng, C.-K., Ladin, Z., Wei, J.Y., and Goldberger, A.L. (1995a). Is walking a random walk? Evidence for long-range correlations in the stride interval of human gait. J. Appl. Physiol., 78:349–358.PubMedGoogle Scholar
  14. Hausdorff, J.M., Purdon, P.L., Peng, C.-K., Ladin, Z., Wei, J.Y., and Goldberger, A.L. (1996). Fractal dynamics of human gait: stability of long-range correlation in stride interval fluctuations. J. Appl. Physiol., 80:1448–1457.PubMedGoogle Scholar
  15. Iyengar, N., Peng, C.-K., Morin, R., Goldberger, A.L., and Lipsitz, L.A. (1996). Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am. J. Physiol., 271:R1078–1084.PubMedGoogle Scholar
  16. Kadaba, M.P., Ramakrishnan, H.K., Wootten, M.E., Gainey, J., Gorton, G., and Cochran, G.V.B. (1989). Repeatibility of kinematic, kinetic and electromyographic data in normal adult gait. J. Orthop. Res., 7:849–860.PubMedCrossRefGoogle Scholar
  17. Lipsitz, L.A. and Goldberger, A.L. (1993). Loss of ‘complexity’ and aging. Potential applications of fractals and chaos theory to senescence. JAMA, 267:1806–1809.CrossRefGoogle Scholar
  18. McMahon, T.A. and Cheng, G.C. (1990). The medianics of running: how does stiffness couple with speed? J. Biomech., 23:65–78.PubMedCrossRefGoogle Scholar
  19. Pailhous, J. and Bonnard, M. (1992). Steady-state fluctuations of human walking. Behav. Brain. Res., 47:181–190.PubMedCrossRefGoogle Scholar
  20. Patla, A.E. (1985). Some characteristics of EMG patterns during locomotion: implications for locomotor control processes. J. Mot. Behav., 17:443–461.PubMedGoogle Scholar
  21. Peng, C.-K., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Simons, M., and Stanley, H.E. (1993). Finite size effects on long-range correlations: implications for analyzing DNA sequences. Phys. Rev. E, 47:3730–3733.CrossRefGoogle Scholar
  22. Peng, C.-K., Havlin, S., Stanley, H.E., and Goldberger, A.L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos, 6:82–87.CrossRefGoogle Scholar
  23. Penney, J.B. and Young, A.B. (1993). Huntington’s disease. In Parkinson’s Disease and Movement Disorders. Jankovic J. and Tolosa E. (eds.), 205–216. Williams and Wilkins, Baltimore.Google Scholar
  24. Podsiadlo, D. and Richardson, S. (1991). The timed “up and go”: a test of basic functional mobility for frail elderly persons. JAGS, 39:142–148.Google Scholar
  25. Samorodnitsky, G. and Taqqu, M.S. (1994). Stable non-Gaussian random processes: stochastic models with infinite variance. Chapman and Hall, New York.Google Scholar
  26. Stanley, H.E. (1971). Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, Oxford and New York.Google Scholar
  27. Strogatz, S.H. and Stewart, I. (1993). Coupled oscillators and biological synchronization. Sci. Am., 102–109.Google Scholar
  28. Taga, G. (1994). Emergence of bipedal locomotion through entrainment among the neuro-musculo-skeletal system and the environment. Physica. D., 190–208.Google Scholar
  29. Van Kampen, N.G. (1981). Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam.Google Scholar
  30. Voss, R.F. (1988). Fractals in nature: from characterization to simulation. In The Science of Fractal Images. Peitgen H.O. and Saupe D. (eds.), pp. 21–70. Springer-Verlag, New York.CrossRefGoogle Scholar
  31. Weissman, M.B. (1988). 1/f noise and other slow, non-exponential kinetics in condensed matter. Rev. Mod. Phys., 60:537–571.CrossRefGoogle Scholar
  32. Winter, D.A. (1984). Kinematic and kinetic patterns in human gait: variability and compensating effects. Hum. Mov. Sci., 3:51–76.CrossRefGoogle Scholar
  33. Yamasaki, M., Sasaki, T., and Torri, M. (1991). Sex difference in the pattern of lower limb movement during treadmill walking. Eur. J. Appl. Phys., 62:99–103.CrossRefGoogle Scholar
  34. Young, A.B., Penney, J.B., Starosta-Rubinstein, S., et al. (1986). PET scan investigations of Huntington’s disease: cerebral metabolic correlates of neurological features and functional decline. Ann. Neurol., 20:296–303.PubMedCrossRefGoogle Scholar


  1. Cohen, A.H., Guan, L., Harris, J., Jung, R., and Kiemel, T. (1996). Interaction **between the caudal brainstem and the lamprey central pattern generator for locomotion. Neuroscience, 74(4):1161–1173.PubMedGoogle Scholar
  2. Jung, R., Kiemel, T., and Cohen, A.H. (1996). Dynamical behavior of a neural network model of locomotor control in the lamprey. J. Neurophysiol., 75(3):1074–1086.PubMedGoogle Scholar
  3. Vinay, L. and Grillner, S. (1993). The spino-reticulo-spinal loop can slow down the NMDA-activated spinal locomotor network in lamprey. NeuroReport, 4:609–612.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2000

Authors and Affiliations

  • Jeffrey M. Hausdorff
  • C. K. Peng
  • Jeanne Y. Wei
  • Ary L. Goldberger
  • Ranu Jung

There are no affiliations available

Personalised recommendations