Skip to main content

Multicomponent Models of Body Composition: An Overview

  • Conference paper
Book cover Quality of the Body Cell Mass

Part of the book series: Serono Symposia USA ((SERONOSYMP))

Abstract

This chapter will examine concepts related to a category of body composition methods generally referred to as multicomponent models. Additional details on specific model development are presented in earlier reports (Heymsfield 1990, 1991, 1996, Wang 1995). A component or “compartment” in body research is one of 35–40 discrete clearly defined atomic, molecular, cellular, or tissue-system level entities, as shown in Figure 3.1 (Wang 1992). The sum of all components at each level of body composition is equivalent to body weight. For example, at the molecular level

  1. (1)

    Body Weight = Fat + Water + Protein + Glycogen + Minerals

    • Multicomponent models (Table 3.1) consist of three or more components at the same body composition level. Level models, in turn, are the cornerstone of multicomponent model development. An example is the classic three-component model at the molecular level of Siri (1961)

  2. (2)

    Body Weight = Fat + Water + Fat-free solids

    • The origin of multicomponent models dates back at least five decades, and many early models remain in use today with little modification from their original early counterparts. Some examples of early influential models are summarized in Table 3.2. The list is not exhaustive, but it is intended to demonstrate the broad array and early development of multicomponent models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen TH, Kryzwicki Hi, Roberts JE. Density, fat, water and solids in freshly isolated tissues. J Appl Physiol 1959; 14: 1005–8.

    PubMed  CAS  Google Scholar 

  • Anderson EC. Three-component body composition analysis based on potassium and water determinations. Ann Intern Med, 1963; 110: 189–212.

    CAS  Google Scholar 

  • Bartoli WP, Davis JM, Pate RR, Ward DS, Watson PD. Weekly variability in total body water 2H20 dilution in college-age males. Med Sci Sports Exer, 1993; 25: 1422–28.

    CAS  Google Scholar 

  • Baumgartner RN, Heymsfield SB, Lichtman S, Wang J, Pierson RN Jr. Body composition in elderly people: effect of criterion estimates on predictive equations. Am J Clin Nutr 1991; 53: 1345–53.

    PubMed  CAS  Google Scholar 

  • Beddoe AH, Streat SJ, Hill GL. Evaluation of an in vivo prompt gamma neutron activation facility for body composition studies in critically ill intensive care patients: results on 41 normals. Metabolism 1984; 33: 270–80.

    Article  PubMed  CAS  Google Scholar 

  • Behnke AR, Feen BG, Welham WC. Specific gravity of healthy man. JAMA 1942; 118: 495–98.

    Google Scholar 

  • Biltz RM, Pellegrino ED. The chemical anatomy of bone. J Bone Joint Surg 1969; 51A: 456–66.

    PubMed  CAS  Google Scholar 

  • Brozek J, Grande F, Anderson JT, Keys A. Densitometric analysis of body composition from girth measurement: revision of some quantitative assumptions. Ann NY Acad Sci 1963;110 (Part) 1: 113–40.

    Google Scholar 

  • Bull H. Norsk Fiskeritidende 1896; 15: 549–57.

    Google Scholar 

  • Burnell JM, Baylink CH, Chestnut CH III, Mathews MW, Teuber EJ. Bone matrix and mineral abnormalities in postmenopausal osteoporosis. Metabolism 1982; 31: 1113–20.

    Article  PubMed  CAS  Google Scholar 

  • Burton AC. Human calorimetry. II. The average temperature of the tissues of the body. J Nutr 1935; 9: 261–79.

    CAS  Google Scholar 

  • Chinn KSK. Prediction of muscle and remaining tissue protein in man. J Appl Physiol 1967; 23: 713–15.

    PubMed  CAS  Google Scholar 

  • Cohn SH, Vaswani AN, Yasamura S, Yuen K, Ellis KJ. Improved models for determination of body fat by in vivo neutron activation. Am J Clin Nutr 1984; 40: 255–59.

    PubMed  CAS  Google Scholar 

  • Culebras JM, Moore FD. Total body water and the exchangeable hydrogen. I. Theoretical calculation of non-aqueous exchangeable hydrogen in man. Am J Physiol 1977; 232: R54–59.

    PubMed  CAS  Google Scholar 

  • Cunningham J. N x 6.25: recognizing a bivariate expression for protein balance in hospitalized patients. Nutrition 1994; 10: 124–27.

    CAS  Google Scholar 

  • Dallemagne MJ, Melon J. Le poids specifique et l’indice de refraction de l’os, de l’email, de la dentine et du cement. Bull Soc Chim France 1945; 27: 85–93.

    CAS  Google Scholar 

  • Diem K. Documenta Geigy scientific tables. Ardsley, NY: Geigy Pharmaceuticals, 1962.

    Google Scholar 

  • Diem K. Documenta Geigy scientific tables. Ardsley, NY: Geigy Pharmaceuticals, 1962.

    Google Scholar 

  • Dutton J. In vivo analysis of body elements and body composition. Univ Wales Sci Tech Rev 1991; 8: 19–30.

    Google Scholar 

  • Eddy DM. Practice policies: what are they? JAMA 1990; 263: 877–80.

    Article  PubMed  CAS  Google Scholar 

  • Fidanza F, Keys A, Anderson JT. Density of body fat in man and other mammals. J Appl Physiol 1953; 6: 252–56.

    PubMed  CAS  Google Scholar 

  • Forbes GB, ed. Human body composition: growth, aging, nutrition, and activities. New York: Springer-Verlag, 1987.

    Google Scholar 

  • Foster MA, Hutchinson JMS, Mallard JR, Fuller M. Nuclear magnetic resonance pulse sequence and discrimination of high-and low-fat tissue. Mag Res Imag, 1984; 2: 187–92.

    Article  CAS  Google Scholar 

  • Friedl KE, DeLuca JP, Marchitelli LJ, Vogel JA. Reliability of body fat estimations from a four-compartment model by using density, body water, and bone mineral measurements. Am J Clin Nutr 1992; 55: 764–70.

    PubMed  CAS  Google Scholar 

  • Fuller NJ, Jebb SA, Laskey MA, Coward WA, Elia M. A four compartment model for assessment of body composition in humans: comparison with alternative methods and evaluation of density and hydration of fat-free mass. Clin Sci 1992; 82: 687–93.

    PubMed  CAS  Google Scholar 

  • Goran MI, Poehlman ET, Nair KS, Danforth E Jr. Effect of gender, body composition, and equilibration time on the 2H-to-18O dilution space ratio. Am J Physiol 1992; 263: E1119–24.

    PubMed  CAS  Google Scholar 

  • Gurr MI, Harwood JL. Lipid biochemistry; fourth ed. London: Chapman and Hall, 1991.

    Book  Google Scholar 

  • Haurowitz F. The chemistry and function of proteins. New York: Academic Press, 1963.

    Google Scholar 

  • Heymsfield SB, Lichtman S, Baumgartner RN, Wang J, Kamen Y, Aliprantis A, et al. Body composition of humans: comparison of two improved four-compartment models that differ in expense, technical complexity, and radiation exposure. Am J Clin Nutr 1990; 52: 52–58.

    PubMed  CAS  Google Scholar 

  • Heymsfield SB, Matthews DE. Body composition: research and clinical advances-1993 A.S.P. E.N. Research Workshop. J Parent Enteral Nutr 1994; 18: 91–103.

    Article  CAS  Google Scholar 

  • Heymsfield SB, Waki M. Body composition in humans: advances in the development of multicompartment chemical models. NutrRev 1991; 49: 97–108.

    CAS  Google Scholar 

  • Heymsfield SB, Waki M, Kehayias JJ, Lichtman S, Dilmanian FA, Kamen Y. Chemical and elemental analysis of humans in vivo using improved body composition models. Am J Physiol 1991; 261: E190–98.

    PubMed  CAS  Google Scholar 

  • Heymsfield SB, Wang ZM, Withers R. Multicomponent molecular level models of body composition analysis. In: Human body composition. Roche A, Heymsfield SB, Lohman TG, eds. Champaign, IL: Human Kinetics, 1996; 129–47

    Google Scholar 

  • Kehayias JJ, Ellis KJ, Cohn SH, Yasumura S. Use of a pulsed neutron generator for in vivo measurement of body carbon. In: In vivo body composition studies. Ellis KJ, Yasumura S, Morgan WD, eds. London: The Institute of Physical Sciences in Medicine, 1987:427– 35.

    Google Scholar 

  • Kehayias JJ, Heymsfield SB, LoMonte AF, Wang J, Pierson RN Jr. In vivo determination of body fat by measuring total body carbon. Am J Clin Nutr 1991; 53: 1339–44.

    PubMed  CAS  Google Scholar 

  • Kleiber M. The fire of life. Huntington, NY: Kreiger, 1975.

    Google Scholar 

  • Knight GS, Beddoe AH, Streat SJ, Hill GL. Body composition of two human cadavers by neutron activation and chemical analysis. Am J Physiol 1986; 250: E179–85.

    PubMed  CAS  Google Scholar 

  • Kyere K, Oldroyd B, Oxby CB, Burkinshaw K, Ellis RE, Hill GL. The feasibility of measuring total body carbon by counting neutron inelastic scatter gamma rays. Phys Med Biol 1982; 27: 805–17.

    Article  PubMed  CAS  Google Scholar 

  • Lohman TG. Skinfolds and body density and their relation to body fatness: a review. Hum Biol 1981; 53: 181–225.

    PubMed  CAS  Google Scholar 

  • Lohman TG. Applicability of body composition techniques and constants for children and youths. Med Sci Sports Exer, 1986; 14: 325–57.

    CAS  Google Scholar 

  • Lohman TG. Advances in body composition assessment. In: Current issues in exercise science. Champaign, IL: Human Kinetics, 1992.

    Google Scholar 

  • Lohman TG, Going SB. Multicomponent models in body composition research: opportunities and pitfalls. In: Human Body Composition. Ellis KJ, Eastman JD, eds. New York: Plenum Press, 1993: 53–58.

    Google Scholar 

  • Matiegka J. The testing of physical efficiency. Am J Phys Anthropol 1921; 4: 223–30.

    Article  Google Scholar 

  • Mendez J, Keys A. Density of fat and bone mineral of mammalian muscle. Metabolism 1960; 9: 184–88.

    CAS  Google Scholar 

  • Mernagh JR, Harrison JE, McNeill KG. In vivo determination of nitrogen using Pu-Be sources. Phys Med Biol 1977; 22: 831–35.

    Article  PubMed  CAS  Google Scholar 

  • Moore FD, Olesen KH, McMurrey JD, Parker JHV. The body cell mass and its supporting environment: body composition in health and disease. Philadelphia: W.B. Saunders Company, 1963.

    Google Scholar 

  • Mueller SH, Martorell R. Reliability and accuracy of measurement. In: Anthropometric standardization reference manual. Lohman TB, Roche AF, Martorell R, eds. Champaign, IL: Human Kinetics, 1988: 83–87.

    Google Scholar 

  • Pace N, Rathbun EN. Studies on body composition; body water and chemically combined nitrogen content in relation to fat content. J Biol Chem 1945; 158: 685–91.

    CAS  Google Scholar 

  • Ryde SJS, Birks JL, Morgan WD, Evans CJ, Dutton J. A five-compartment model of body composition of health subjects assessed using in vivo neutron activation analysis. Eur J Clin Nutr 1993; 47: 863–74.

    PubMed  CAS  Google Scholar 

  • Ryde SJS, Birks JL, Morgan WD, Evans CJ, Dutton J. A five-compartment model of body composition of health subjects assessed using in vivo neutron activation analysis. Eur J Clin Nutr 1993; 47: 863–74.

    PubMed  CAS  Google Scholar 

  • Schoeller DA, Jones PJH. Measurement of total body water by isotope dilution: a unified approach to calculations. In: In vivo body composition studies. Ellis KJ, Yasumura S, Morgan WD, eds. London: Institute of Physical Sciences in Medicine, 1987: 131–37.

    Google Scholar 

  • Schoeller DA, Van Santen E, Peterson DW, Dietz W, Jaspan J, Klein PD. Total body water measurement in humans with 18O and 2H labeled water. Am J Clin Nutr 1980; 33: 268–693.

    Google Scholar 

  • SelingerA. The body as a three component system. Ph.D. Dissertation. Urbana, IL: University of Illinois, 1977.

    Google Scholar 

  • Sheng HP, Huggins RA. A review of body composition studies with emphasis on total body water and fat. Am J Clin Nutr 1979; 32: 630–47.

    PubMed  CAS  Google Scholar 

  • Siri WE. Body composition from fluid spaces and density: analysis of methods. In: Techniques for measuring body composition. Brozek J, Henschel A, eds. Washington, DC: National Academy of Science, 1961: 223–44.

    Google Scholar 

  • Sjostrom L, Kvist H, Cederblad A, Tylen U. Determination of total adipose tissue and body fat in women by computed tomography, 40K, and tritium. Am J Physiol 1986; 250: E736–45.

    PubMed  CAS  Google Scholar 

  • Snyder WS, Cook MJ, Nasset ES, Karhamsen LR, Howells GP, Tipton IH. Report of the Task Group on Reference Man. Oxford: Pergamon Press, 1984.

    Google Scholar 

  • Taylor R, Price TB, Rothman DL, Shulman RG, Shulman GI. Validation of 13C NMR measurement of human skeletal muscle glycogen by direct biochemical assay of needle biopsy samples. Mag Res Med 1992; 27: 13–20.

    Article  CAS  Google Scholar 

  • Tester AL. A specific gravity method for determining fatness (condition) in herring. J Fish Res Bd Can 1940; 4: 461–71.

    Google Scholar 

  • Vartsky D, Ellis KJ, Cohn SH. In vivo measurement of body nitrogen by analysis of prompt gamma from neutron capture. J Nucl Med 1979; 20: 1158–65.

    PubMed  CAS  Google Scholar 

  • Vartsky D, Ellis KJ, Vaswani AN, Yasumura S, Cohn SH. An improved calibration of the in vivo determination of body nitrogen, hydrogen and fat. Phys Med Biol 1984; 29: 209–18.

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Pierson RN Jr, Kelly WG. A rapid method for the determination of deuterium oxide in urine: application to the measurement of total body water. J Lab Clin Med 1973; 82: 170–78.

    PubMed  CAS  Google Scholar 

  • Wang ZM, Heshka S, Pierson RN Jr, Heymsfield SB. Systematic organization of body-composition methodology: an overview with emphasis on component-based methods. Am J Clin Nutr1995; 61: 457–65.

    Google Scholar 

  • Wang ZM, Pierson RN Jr, Heymsfield SB. The five-level model: a new approach to reorganizing body-composition research. Am J Clin Nutr 1992, 56: 19–28.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Heymsfield, S.B., Wang, ZM., Gallagher, D., Pietrobelli, A. (2000). Multicomponent Models of Body Composition: An Overview. In: Pierson, R.N. (eds) Quality of the Body Cell Mass. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2090-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2090-9_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7410-0

  • Online ISBN: 978-1-4612-2090-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics