Skip to main content

Injury, Body Composition, and Nitrogen Metabolism in the Surgical Patient

  • Conference paper
Quality of the Body Cell Mass

Part of the book series: Serono Symposia USA ((SERONOSYMP))

  • 123 Accesses

Abstract

Weight loss and wasting in the injured patient are multifactorial, and are due both to inadequate food intake and to excessive catabolism. The capacity to estimate change in lean body mass (LBM) in the perioperative period is limited due to the lack of appropriate methodology. Most in vivo methods currently utilized for estimating body mass and composition yield information mostly pertaining to body fat and body water. Most estimates of LBM are indirect, expensive, difficult, and complex for routine clinical and investigational use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe Y, Miyake M, Horiuchi A, Kumori K, Kimura S. Changes in the productivity of cytokines and active-oxygen in peripheral blood cells following surgery. Surg Today 1992; 22: 15–18.

    Article  PubMed  CAS  Google Scholar 

  • Abumrad NN, Rabin D, Wise KL, Lacy WW. The disposal of an intravenously administered amino acid load across the human forearm. Metabolism 1982; 31: 463–70.

    Article  PubMed  CAS  Google Scholar 

  • Aoki TT, Brennan M, Fitzpatrick GF, Knight DC. Leucine meal increases glutamine and total nitrogen release from forearm muscle. J Clin Invest 1981; 68: 1522–28.

    Article  PubMed  CAS  Google Scholar 

  • Bachhawat BK, Robinson WG, Coon MJ. The enzymatic cleavage of beta-hydroxy-betamethylglutaryl coenzyme A to aceto-acetate and acetyl coenzyme A. J Biol Chem 1955; 216: 727–36.

    PubMed  CAS  Google Scholar 

  • Bates PC, Grimble GK, Sparrow MP, Millward DJ. Myofibrillar protein turnover: synthesis of protein-bound 3-methylhistidine, actin, myosin heavy chain and aldolase in rat skeletal muscle in the fed and starved states. J Biochem 1983; 214: 593–605.

    CAS  Google Scholar 

  • Beg ZH, Lupien PJ. In vitro and in vivo inhibition of hepatic cholesterol synthesis by 3-hydroxy-3-methylglutaric acid. Biochim Biophys Acta 1972; 260: 439–48.

    PubMed  CAS  Google Scholar 

  • Benedict FG. A study of prolonged fasting. Carnegie Institute Publication No. 203. Washington, DC: Carnegie Institute, 1915.

    Google Scholar 

  • Bergstrom J, Beroniade V, Hultman E, Norch-Nordlund AE. Relation between glycogen and electrolyte metabolism in human muscle. In: Symposium uber Transport and Funktion intracellularer elektrolyte. Kruck SF, ed. Munich: Urban and Schwarzenberg, 1967.

    Google Scholar 

  • Bergstrom J, Furst P, Holmstrom B, Vinnars E, Ashkenazi J, Elwyn DH, et al. Influence of surgery and nutrition on muscle water and electrolytes. Effect of elective operations. Ann Surg 1981; 193: 810–19.

    Article  PubMed  CAS  Google Scholar 

  • Bloch K, Clark LC, Haray I. Utilization of branched chain acids in cholesterol synthesis. J Biol Chem 1954; 211: 687–99.

    PubMed  CAS  Google Scholar 

  • Blomstrand E, Hassmen E, Ekblom B, Newsholme EA. Administration of branched-chain amino acids during sustained exercise. The effects on performance and plasma concentrations of some amino acids. J Appl Physiol 1991; 68: 83–88.

    Google Scholar 

  • Buckspan R, Hoxworth B, Cersosimo E, Devlin J, Horton E, Abumrad NN. Alphaketoisocaproate is superior to leucine in sparing glucose utilization in humans. Am J Physiol 1986; 251: E648–53.

    PubMed  CAS  Google Scholar 

  • Burns J, Cresswell E, Ell S, Fynn M, Jackson MA, Lee HA, et al. Comparison of the effects of keto acid analogues and essential amino acids on nitrogen homeostasis in uremic patients on moderately protein-restricted diets. Am J Clin Nutr 1978; 31: 1767–75.

    PubMed  CAS  Google Scholar 

  • Cersosimo E, Miller BM, Lacy WW, Abumrad NN. Alpha-ketoisocaproate, not leucine, is responsible for nitrogen sparing during progressive fasting in normal male volunteers. Surg Forum 1983; 34: 96–99.

    CAS  Google Scholar 

  • Choo PS, Smith TK, Cho CY, Ferguson HW. Dietary excesses of leucine influence growth and body composition of rainbow trout. J Nutr 1991; 121: 1932–39.

    PubMed  CAS  Google Scholar 

  • Chua B, Siehl DL, Morgan HE. Effect of leucine and metabolites of branched chain amino acids on protein turnover in heart. J Biol Chem 1979; 254: 8358–62.

    PubMed  CAS  Google Scholar 

  • Cuthbertson DP. Observations on the disturbance of metabolism produced by injury to the limbs. Q J Med 1932; 1: 237–51.

    Google Scholar 

  • Cuthbertson DP. The metabolic response to injury and its nutritional implications: retrospect and prospect. JPEN 1979; 3: 108–29.

    CAS  Google Scholar 

  • Duran M, Ketting D, Wadman SK, Jakobs C, Schutgens RBH, Veder HA. Organic acid excretion in a patient with 3-hydroxy-3-methylglutaryl-CoA lyase deficiency: facts and artefacts. Clin Chim Acta 1978; 90: 187–93.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson LS, Hagenfeldt L, Wahren J. Intravenous infusion of a-oxoisocaproate: influence on amino acid and nitrogen metabolism in patients with liver cirrhosis. Clin Sci 1982; 62: 285–93.

    PubMed  CAS  Google Scholar 

  • Eriksson LS, Conn HO. Branched-chain amino acids in hepatic encephalopathy. Gastroenterology, 1990; 99: 604–5.

    Google Scholar 

  • Finn PJ, Plank LD, Clark MA, Connolly AB, Hill GL. Progressive cellular dehydration and proteolysis in critically ill patients. Lancet 1996; 347: 654–56.

    Article  PubMed  CAS  Google Scholar 

  • Flakoll PJ, Kulaylat M, Frexes-Steed M, Hourani H, Brown LL, Hill JO, et al. Amino acids augment insulin’s suppression of whole body proteolysis. Am J Physiol 1989; 257: E839–47.

    PubMed  CAS  Google Scholar 

  • Frexes-Steed M, Warner ML, Bulus N, Flakoll P, Abumrad NN. Role of insulin and branched-chain amino acids in regulating protein metabolism during fasting. Am J Physiol 1990; 258: E907–17.

    PubMed  CAS  Google Scholar 

  • Frexes-Steed M, Lacy DB, Collins J, Abumrad NN. Role of leucine and other amino acids in regulating protein metabolism in vivo. Am J Physiol 1992; 262: E925–35.

    PubMed  CAS  Google Scholar 

  • Garibaldo RA, Britt MR, Coleman ML, Reading JC, Pace NL. Risk factors for the development of postoperative pneumonia. Am J Med 1981; 70: 677–80.

    Article  Google Scholar 

  • Grande F, Keys A. Body weight composition and calorie status. In: Modern nutrition in health and disease. Philadelphia: Lea & Febiger, 1980: 3–34.

    Google Scholar 

  • Harbhajan PS, Siamak AA. Leucine oxidation in diabetes and starvation: effects of ketone bodies on branched chain amino acid oxidation in vitro. Metabolism 1978; 27: 185–200.

    Article  Google Scholar 

  • Haydock DA, Hill GL. Impaired wound healing in surgical patients with varying degrees of malnutrition. JPEN 1987; 10: 550–54.

    Google Scholar 

  • Hider RC, Fern EB, London DR. Relationship between intracellular amino acids and protein synthesis in the extensor digitorum longus muscle of rats. J Biochem 1960; 114: 171–78.

    Google Scholar 

  • Hill GL. Body composition research at the University of Auckland. Some implications for modern surgical practice. Aust NZ J Surg 1988; 58: 13–21.

    Article  CAS  Google Scholar 

  • Hokland BM, Bremer J. Formation and excretion of branched-chain acylcarnitines and branched-chain hydroxy acids in the perfused rat kidney. Biochim Biophys Acta 1988; 961: 30–37.

    PubMed  CAS  Google Scholar 

  • Keim NL, Mayclin PL, Taylor SF, Brown DL. Total-body electrical conductivity method for estimating body composition: validation by direct carcass analysis of pigs 1–4. Am J Clin Nutr 1988; 47: 180–85.

    PubMed  CAS  Google Scholar 

  • Kinney JM. The tissue composition of surgical weight loss. In: Advances in parenteral nutrition. Johnson IDA, ed. Lancaster, England: MTP 1978: 511–20.

    Google Scholar 

  • Krebs HA, Lund P. Aspects of the regulation of the metabolism of branched-chain amino acids. Adv Enz Reg 1977; 15: 375–94.

    Article  CAS  Google Scholar 

  • Kuhlman G, Roth JA, Flakoll PJ, Vandehaar MJ, Nissen S. Effects of dietary leucine, a-ketoisocaproate and isovalerate on antibody production and lymphocyte blastogenesis in growing lambs. J Nutr 1988; 118: 15649.

    Google Scholar 

  • Long CLL, Haverberg N, Young VR, Kinney JM, Munro HN, Geiger JW. Metabolism of 3-methylhistidine in man. Metabol 1975; 24: 929–35.

    Article  CAS  Google Scholar 

  • Long CLL, Dillard DR, Bodzin JH, Geiger JW, Blakemore WS. Validity of 3-methylhistidine excretion as an indicator of skeletal muscle protein breakdown in humans. Metabolism 1988; 37: 844–49.

    Article  PubMed  CAS  Google Scholar 

  • Marchesini G, Zoli M, Dondi C, Bianchi G, Cirulli M, Pisi E. Anticatabolic effect of branched-chain amino acid-enriched solutions in patients with liver cirrhosis. Hepatology 1982; 2: 420–25.

    Article  PubMed  CAS  Google Scholar 

  • Mathias MM, Sullivan AC, Hamilton JG. Fatty acid and cholesterol synthesis from specifically labeled leucine by isolated rat hepatocytes. Lipids 1981; 16: 739–43.

    Article  PubMed  CAS  Google Scholar 

  • Miles JM, Nissen SL, Rizza RA, Gerischj JE, Haymond MW. Failure of infused ßhydroxybutyrate to decrease proteolysis in man. Diabetes 1983; 32: 197–205.

    Article  PubMed  CAS  Google Scholar 

  • Mitch WE, Walser M, Sapir D. Nitrogen sparing induced by leucine compared with that induced by its keto analog-ketoisocaproate in fasting obese man. J Clin Invest 1981; 67: 553–62.

    Article  PubMed  CAS  Google Scholar 

  • Mock DM, Mock NI, Weintraub S. Abnormal organic aciduria in biotin deficiency: the rat is similar to the human. J Lab Clin Med 1988; 112: 240–47.

    PubMed  CAS  Google Scholar 

  • Molina PE, Ajmal M, Abumrad NN. Energy metabolism and fuel mobilization; from the perioperative period to recovery. Shock 1998; 9: 241–48.

    Article  PubMed  CAS  Google Scholar 

  • Monk DN, Plank LD, Frach-Arcas G, Finn PJ, Streat SJ, Hill GL. Sequential changes in the metabolic response in critically injured patients during the first 25 days after blunt trauma. Ann Surg 1996; 223: 395–405.

    Article  PubMed  CAS  Google Scholar 

  • Moore FD, Olesen KH, McMurrey JD, Parker HV, Ball MR, Boyden CM. The body cell mass and its supporting environment. Philadelphia/London: W.B. Saunders Company, 1963.

    Google Scholar 

  • Morgan HE, Chua BH, Boyd T, Jefferson LS. Branched chain amino acids and the regulation of protein turnover in heart and skeletal muscle. In: Metabolism and clinical implications of branched chain amino and ketoacids. Walser M, Williamson JR, eds. New York: Elsevier North Holland, 1981: 217–26.

    Google Scholar 

  • Mortimore GE, Poso AR, Kadowaki M, Wert JJ Jr. Multiphasic control of hepatic protein degradation by regulatory amino acids. J Biol Chem 1987; 262: 16322–27.

    PubMed  CAS  Google Scholar 

  • Nair KS, Welle SL, Halliday DJ, Campbell RG. Effect of ß-hydroxybutyrate on whole-body leucine kinetics and fractional mixed skeletal muscle protein synthesis in humans. J Clin Invest 1988; 82: 198–205.

    Article  PubMed  CAS  Google Scholar 

  • Nissen SL, Van Koevering M, Webb D. Analysis of β-hydroxy-β-methyl butyrate in plasma by gas chromatography and mass spectrometry. Anal Biochem 1990; 88: 17–19.

    Article  Google Scholar 

  • Nissen SL, Sharp R, Rathmacher JA, Rice J, Fuller JC Jr, Connelly AS, et al. The effect of the leucine metabolite (3-hydroxy ß-methylbutyrate on muscle metabolism during resistance-exercise training. J Appl Physiol 1996; 81: 2095–104.

    PubMed  CAS  Google Scholar 

  • Nissen SL, Abumrad NN. Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). J Nutr Biochem 1997; 8: 300–11.

    Article  CAS  Google Scholar 

  • Pawan GLS, Semple SJG. Effect of 3-hydroxybutyrate in obese subjects on very low energy diets. Proc Nutr Soc 1980; 39: 48a.

    Google Scholar 

  • Pichard C, Kyle U, Chevrolet JC, Jolliet P, Slosman D, Mensi N, et al. Lack of effects of recombinant growth hormone on muscle function in patients requiring prolonged mechanical ventilation: a prospective, randomized, controlled study. Crit Care Med 1996; 24: 403–13.

    Article  PubMed  CAS  Google Scholar 

  • Prior BM, Cureton KJ, Modlesky CM, Evans EM, Sloniger MA, Saunders M, Lewis RD. In vivo validation of whole body composition estimates from dual-energy X-ray absorptiometry. J Appl Physiol 1997; 83: 623–30.

    PubMed  CAS  Google Scholar 

  • Rathmacher JA, Flakoll PJ, Nissen SL. A compartmental model of 3-methylhistidine metabolism in humans. Am J Physiol 1995; 269: E193–98.

    PubMed  CAS  Google Scholar 

  • Rosenthal J, Angel A, Farkus J. Metabolic fate of leucine: a significant sterol precursor in adipose tissue and muscle. Am J Physiol 1974; 226: 411–18.

    PubMed  CAS  Google Scholar 

  • Sanbourin PJ, Bieber LL. Formation of β-hydroxyisovalerate from α-ketoisocaproate by a soluble preparation from rat liver. Dev Biochem 1981; 18: 149–54.

    Google Scholar 

  • Sandstrom R, Svanberg E, Hyltander A, Haglind E, Ohlsson C, Zachrisson H, et al. The effect of recombinant human IGF-I on protein metabolism in post-operative patients without nutrition compared to effects in experimental animals. Eur J Clin Invest 1995; 25: 784–92.

    Article  PubMed  CAS  Google Scholar 

  • Sax HC, Talamini MA, Fischer JE. Clinical use of branched-chain amino acids in liver disease, sepsis, trauma, and burns. Arch Surg 1986; 121: 358–66.

    PubMed  CAS  Google Scholar 

  • Sjölin J, Stjernström H, Friman G, Larsson J, Wahren J. Total and net muscle protein breakdown in infection determined by amino acid effluxes. Am J Physiol 1990; 258: E856–63.

    PubMed  Google Scholar 

  • Smith TK. Effect of leucine-rich dietary protein on in vitro protein synthesis in porcine muscle. Proc Soc Exp Biol Med 1985; 180: 538–43.

    PubMed  CAS  Google Scholar 

  • Tanaka K, Isselbacher ICJ. Experimental beta-hydroxyisovaleric aciduria induced by biotin deficiency. Lancet 1970; 31: 930–31.

    Article  Google Scholar 

  • Tischler ME, Desautels M, Goldberg AL. Does leucine, leucyl-trna, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J Biol Chem 1981; 257: 1613–21.

    Google Scholar 

  • Van Koevering M, Nissen S. Oxidation of leucine and a-ketoisocaproate to β-hydroxy-β-methylbutyrate in vivo. Am J Physiol 1992; 262: 27–31.

    Google Scholar 

  • Wagenmakers AJM, Salden HJM, Veerkamp JH. The metabolic fate of branched chain amino acids and 2-oxo acids in rat muscle homogenate and diaphragms. Int J Biochem 1985; 17: 957–65.

    Article  PubMed  CAS  Google Scholar 

  • Windsor JA, Hill GL. Depleted protein stores lead to an increased complication rate after major surgery. Aust NZ J Surg 1987; 57: 259–65.

    Google Scholar 

  • Yarasheski KE. Growth hormone effects on metabolism, body composition, muscle mass, and strength. Exer Sport Sci Rev 1994; 22: 285–312.

    Article  CAS  Google Scholar 

  • Young VR, Alex SD, Baliga BS, Munro HN, Muecke H. Metabolism of administered 3-methylhistidine: lack of muscle transfer ribonucleic acid charging and quantitative excretion as 3-methylhistidine and its N-acetyl derivative. J Biol Chem 1972;217:3592–600

    Google Scholar 

  • Young VR, Munro HR. Nt-Methylhistidine (3-methylhistidine) and muscle protein turnover: an overview. Fed Proc 1978; 37: 2291–300.

    PubMed  CAS  Google Scholar 

  • Yu W, Kuhara T, Inoue Y, Matsumoto I, Iwasaki R, Morimoto S. Increased urinary excretion of β-hydroxyisovaleric acid in ketotic and nonketotic type II diabetes mellitus. Clin Chim Acta 1990; 188: 161–68.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Abumrad, N.N., Molina, P.E., Rathmacher, J.A., Nissen, S. (2000). Injury, Body Composition, and Nitrogen Metabolism in the Surgical Patient. In: Pierson, R.N. (eds) Quality of the Body Cell Mass. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2090-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2090-9_27

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7410-0

  • Online ISBN: 978-1-4612-2090-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics