Skip to main content

Magnetic Resonance Imaging (MRI): Data Acquisition and Applications in Human Body Composition

  • Conference paper
Quality of the Body Cell Mass

Part of the book series: Serono Symposia USA ((SERONOSYMP))

  • 135 Accesses

Abstract

Incremental improvements in our knowledge of body composition are abetted by advances in research technology. Magnetic resonance imaging (MRI) has profoundly influenced body composition research. Measurement of whole body and regional adipose tissue distribution, quantification of lean tissue and its principal constituent skeletal muscle, and the measurement of visceral adipose tissue are among the advantages made possible by MRI. Moreover, evidence suggests that the combination of MR spectroscopy (MRS) and MRI may provide a noninvasive means of assessing the composition of skeletal muscle in vivo. Because there are no known health risks associated with MRI, this methodology is well suited for studying normal subjects, and for serial measurements of the effects of nutritional perturbations on both adipose and lean tissues, particularly visceral adipose and skeletal muscle. An overview will be provided in this chapter of the fundamentals required to understand current and future applications of MRI in body composition research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abate N, Burns D, Peshock RM, Garg A, Grundy SM. Estimation of adipose tissue mass by magnetic resonance imaging: validation against dissection in human cadavers. J Lipid Res 1994; 35: 1490–96.

    PubMed  CAS  Google Scholar 

  • Alfidi RJ, Haaga JR, Yousef SJE, Bryan PL, Fletcher BD, LiPuma JP, et al. Preliminary experimental results in humans and animals with a superconducting, whole-body, nuclear magnetic resonance scanner. Radiology 1982; 143: 175–81.

    PubMed  CAS  Google Scholar 

  • Baumgartner RN, Rhyne RL, Troup C, Wayne S, Garry PJ. Appendicular skeletal muscle areas assessed by magnetic resonance imaging in older persons. J Gerontol 1992; 47: M67–72.

    PubMed  CAS  Google Scholar 

  • Beneke R, Neuerburg J, Bohndorf K. Muscle cross-section measurement by magnetic resonance imaging. Eur J Appl Physiol 1991; 63: 424–29.

    Article  CAS  Google Scholar 

  • Bloch F, Hansen WW, Packeard ME. Nuclear introduction. Physiol Rev 1946; 70: 460–74.

    Article  CAS  Google Scholar 

  • Boesch C, Slotboom J, Hoppeler H, Dreis R. In vivo determination of intra-myocellular lipids in human muscle by means of localized ‘H-MR-spectroscopy. Mag Res Med 1997; 37: 484–93.

    Article  CAS  Google Scholar 

  • Damadian R. Tumor detection by nuclear magnetic resonance. Science 1971; 171: 1151–53.

    Article  PubMed  CAS  Google Scholar 

  • Deans HE, Smith FW, Lloyd DJ, Law AN, Sutherland HW. Fetal fat measurement by magnetic resonance imaging. Br J Radio1 1989; 62: 603–7.

    CAS  Google Scholar 

  • de Ridder CM,, de Boer RW, Seidell JC, Nieuwenhoff CM, Jeneson JAL, Bakker CJG et al. Body fat distribution in pubertal girls quantified by magnetic resonance imaging. Int J Obes 1992; 16: 443–49.

    Google Scholar 

  • Engstrom CM, Loeb GE, Reid JR, Forrest WJ, Avruch L. Morphology of the human thigh muscles. A comparison between anatomical sections and computer tomographic and magnetic resonance images. J Anat 1991; 176: 139–56.

    PubMed  CAS  Google Scholar 

  • Ferrando AA, Stuart CA, Brunder DG, Hillman GR. Magnetic resonance imaging quantitation of changes in muscle volume during 7 days of strict bed rest. Aviat Space Environ Med 1995; 66: 976–81.

    PubMed  CAS  Google Scholar 

  • Fleckenstein JL, Canby RC, Parkey RW, Peshock RM. Acute effects of exercise on MR imaging of skeletal muscle in normal volunteers. Am J Roentgenol 1988; 15: 231–37.

    Google Scholar 

  • Fowler PA, Hutchinson JMS, Mallard JR, Fuller MF. Nuclear magnetic resonance pulse sequence and discrimination of high-and low-fat tissues. Mag Res Imag 1984; 2: 187–92.

    Article  Google Scholar 

  • Fowler PA, Fuller MF, Glasby CA, Foster MA, Cameron GG, McNeil G, et al. Total and subcutaneous adipose tissue distribution in women: the measurement of distribution and accurate prediction of quantity by using magnetic resonance imaging. Am J Clin Nut 1991; 54: 18–25.

    CAS  Google Scholar 

  • Fowler PA, Fuller MF, Glasby CA, Cameron GG, Foster MA. Validation of the in-vivo measurement of adipose tissue by magnetic resonance imaging of lean and obese pigs. Am J Clin Nut 1992; 56: 7–13.

    CAS  Google Scholar 

  • Gallagher D, Belmonte D, Deurenberg P, Wang Z, Krasnow N, Pi-Sunyer FX, et al. Organ tissue mass measurement allows modeling of RE and metabolically active tissue mass. Am J Physiol 1998; 275: E249–58.

    PubMed  CAS  Google Scholar 

  • Gerard EL, Snow RC, Kennedy DN, Frisch RE, Guimaraes AR, Barbieri RC, et al. Overall body fat and regional fat distribution in young women: quantification with MR imaging. Am J Rad 1991; 157: 99–104.

    CAS  Google Scholar 

  • Gray D, Fujioka K, Colletti PM, Kim H, Devine W, Cuyegkeng T, et al. Magnetic-resonance imaging used for determining fat distribution in obesity and diabetes. Am J Clin Nutr 1991; 54: 623–27.

    PubMed  CAS  Google Scholar 

  • Hayes PA, Sowood PJ, Belyavin A, Cohen JB, Smith FW. Subcutaneous fat thickness measured by magnetic resonance imaging, ultrasound, and calipers. Med Sci Sports Exer 1988; 20: 303–9.

    Article  CAS  Google Scholar 

  • Heymsfield SB, Ross R. Imaging techniques of body composition: Advantages of measurement and new uses. In: Emerging technologies for nutrition research. Washington, DC: Commission on Military Nutrition Research. National Academy Press, 1997: 127–50.

    Google Scholar 

  • Hinshaw WS, Andrew ER, Bottomley PA, Holland GN, Moore WS, Worthington BS. An in vivo study of the fore-arm and hand by thin section NMR imaging. Br J Radiol 1979; 52: 36–43.

    Article  PubMed  CAS  Google Scholar 

  • Houmard JA, Smith R, Jendrasiak GL. Relationship between MRI relaxation time and muscle fiber. J Appl Physio 1995; 78: 807–9.

    CAS  Google Scholar 

  • Hounsfield GN. Computerized transverse scanning (tomography). Br J Radiol 1973; 46: 1016.

    Article  PubMed  CAS  Google Scholar 

  • Kent-Braun JA, Miller RG, Weiner MW. Magnetic resonance spectroscopy studies of human muscle. Radiol Clin N Am 1994; 32: 313–35.

    PubMed  CAS  Google Scholar 

  • Kuno S, Katsuta S, Inouye T, Anno I, Matsumoto K, Akisada M. Relationship between MR relaxation time and muscle fiber composition. Radiology 1988; 169: 567–68.

    PubMed  CAS  Google Scholar 

  • Kvist H, Chowdhury B, Grangard U, Tylén U, Sjöström L. Total and visceral adipose tissue volumes derived from measurements with computed tomography in adult man and woman: predictive equations. Am J Clin Nutr 1988; 48: 1351–61.

    PubMed  CAS  Google Scholar 

  • Lauterber PS. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 1973; 242: 190–91.

    Article  Google Scholar 

  • Leblanc AD, Gogia P, Schneider V, Krebs J, Schonfeld E, Evans H. Calf muscle area and strength changes after five weeks of horizontal bed rest. Am J Sports Med 1988; 16: 624–29.

    Article  PubMed  CAS  Google Scholar 

  • Leblanc AD, Schneider VS, Evans HJ, Pientok C, Rowe R, Spector E. Regional changes in muscle mass following 17 weeks of bed rest. J Appl Physiol 1992; 73: 2172–78.

    PubMed  CAS  Google Scholar 

  • Mansfield P, Pykett IL, Morris PG. Human whole-body line-scan imaging by NMR. Br J Radiol 1978; 51: 921–22.

    Article  PubMed  CAS  Google Scholar 

  • Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons W, Gallagher D, Ross R. Cadaver validation of magnetic resonance imaging and computerized tomography measurement of human skeletal muscle. J Appl Physiol 1998; 85: 1115–22.

    Google Scholar 

  • Narici MV, Roi GS, Landoni L. Force of knee extensor and flexor muscles and cross-sectional area determined by nuclear magnetic resonance imaging. Eur J Appl Physiol 1988; 57: 39–44.

    Article  CAS  Google Scholar 

  • Narici MV, Roi GS, Landoni L, Minetti AE, Cerretelli P. Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. Eur J Appl Physiol 1989; 59: 310–19.

    Article  CAS  Google Scholar 

  • Purcell EM, Torrey HC, Pound RV. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 1946; 69: 37–38.

    Article  CAS  Google Scholar 

  • Ross R, Leger L, Guardo R, De Guise J, Pike BG. Adipose tissue volume measured by magnetic resonance imaging and computerized tomography in rats. J Appl Physiol 1991; 21: 2164–72.

    Google Scholar 

  • Ross R, Leger L, Morris D, De Guise J, Guardo R. Quantification of adipose tissue by MRI: relationship with anthropometric variables. J Appl Physiol 1992; 72: 787–95.

    PubMed  CAS  Google Scholar 

  • Ross R, Shaw KD, Martel Y, De Guise J, Avruch L. Adipose tissue distribution measured by magnetic resonance imaging in obese women. Am J Clin Nutr 1993; 57: 470–75.

    PubMed  CAS  Google Scholar 

  • Ross R, Shaw KD, Rissanen J, Martel Y, De Guise J, Avruch L. Sex differences in lean and adipose tissue distribution by magnetic resonance imaging: anthropometric relationships. Am J Clin Nutr 1994a; 59: 1277–85.

    PubMed  CAS  Google Scholar 

  • Ross R, Rissanen J. Mobilization of visceral and subcutaneous adipose tissue in response to caloric restriction. Am J Clin Nutr 1994b; 60: 695–703.

    PubMed  CAS  Google Scholar 

  • Ross R, Pedwell H, Rissanen J. Effects of energy restriction and exercise on skeletal muscle and adipose tissue in women as measured by magnetic resonance imaging. Am J Clin Nutr 1995a; 61: 1179–85.

    PubMed  CAS  Google Scholar 

  • Ross R, Pedwell H, Rissanen J. Response of total and regional lean tissue and skeletal muscle to a program of energy and resistance exercise. Int J Obes 1995b; 19: 781–87.

    CAS  Google Scholar 

  • Ross R, Rissanen J, Pedwell H, Clifford J, Shragge P. Influence of diet and exercise on skeletal muscle and visceral adipose tissue in men. J Appl Physiol 1996; 81: 2445–55.

    PubMed  CAS  Google Scholar 

  • Seidell JC, Bakker CJ, van der Kooy K. Imaging techniques for measuring adipose-tissue distribution—a comparison between computed tomography and 1.5-T magnetic resonance. Am J Clin Nutr 1990; 51: 953–57.

    PubMed  CAS  Google Scholar 

  • Simon JH, Szumowski J. Proton (fat/water) chemical shift imaging in medical magnetic resonance imaging. Invest Radiol 1992; 10: 865–74.

    Article  Google Scholar 

  • Sobel W, Rossner S, Hinson B, Hiltbrant E, Karstaedt N, Santago P, et al. Evaluation of a new magnetic resonance imaging method for quantitating adipose tissue areas. Int J Obes 1991; 15: 589–99.

    Google Scholar 

  • Sohlström A, Wahlund L-O, Forsum E. Adipose tissue distribution and total body fat by magnetic resonance imaging, underwater weighing, and body-water dilution in healthy women. Am J Clin Nutr 1993; 58: 830–38.

    PubMed  Google Scholar 

  • Sohlström A, Forsum E. Changes in adipose tissue volume and distribution during reproduction in Swedish women as assessed by magnetic resonance imaging. Am J Clin Nutr 1995; 61: 287–95.

    PubMed  Google Scholar 

  • Staten MA, Totty WG, Kohrt WM. Measurement of fat distribution by magnetic resonance imaging. Invest Radiol 1989; 24: 345–49.

    Article  PubMed  CAS  Google Scholar 

  • Treuth MS, Ryan AS, Pratley RE, Rubin MA, Millar JP, Nicklas BJ, et al. Effects of strength training on total and regional body composition in older men. J Appl Physiol 1994; 77: 614–20.

    PubMed  CAS  Google Scholar 

  • Tsubahara A, Chino N, Akaboshi K, OkajimaY, Takahashi H. Age-related changes of water and fat content in muscles estimated by magnetic resonance (MR) imaging. Disab Rehab 1995; 17: 298–304.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Ross, R. (2000). Magnetic Resonance Imaging (MRI): Data Acquisition and Applications in Human Body Composition. In: Pierson, R.N. (eds) Quality of the Body Cell Mass. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2090-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2090-9_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7410-0

  • Online ISBN: 978-1-4612-2090-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics