Skip to main content

Stochastic Differential Equations Based on Lévy Processes and Stochastic Flows of Diffeomorphisms

  • Chapter

Part of the book series: Trends in Mathematics ((TM))

Abstract

Continuous stochastic differential equations (SDE) based on Brownian motions have been studied a lot. Among them, pathwise properties of the solution such as the continuity, the differentiability and the diffeomorphic properties of the solution with respect to the initial state were studied in detail in the past two decades. Some of these results can be found in the author's book [13].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Applebaum and H. Kunita, Lévy flows and Levy processes on Lie groups, J. Math. Kyoto Univ. 33 (1993), 1103–1123.

    MathSciNet  MATH  Google Scholar 

  2. D. Applebaum and F. Tang, The interlacing construction for stochastic flows of diffeomorphisms on Euclidean spaces, Sankhya, Series A, 63 (2001), 139–178.

    MathSciNet  MATH  Google Scholar 

  3. R. A Carmona and D. Nualart, Nonlinear Stochastic Integrators. Equations and Flows, Stochastic Monographs 6, Gordon and Breach Science Publishers, 1990.

    Google Scholar 

  4. C. Dellacherie and P. A Meyer, Probabilities and Potential B - Theory of Martingales, North Holland, Amsterdam, 1982.

    MATH  Google Scholar 

  5. K. D. Elworthy, Stochastic Differential Equations on Manifolds, LMS Lecture Note Series, 70, Cambridge University Press, Cambridge, UK, 1982.

    Google Scholar 

  6. T. Fujiwara, Stochastic differential equations of jump type on manifolds and Lévy flows, J. Math. Kyoto Univ. 31 (1991), 99–119.

    MathSciNet  MATH  Google Scholar 

  7. T. Fujiwara and H. Kunita, Stochastic differential equations of jump type and Lévy flows in diffeomorphisms group, J. Math. Kyoto Univ. 25 (1985), 71–106.

    MathSciNet  MATH  Google Scholar 

  8. T. Fujiwara and H. Kunita, Canonica1 SDEs based on semimartingales with spatial parameters, Part I Stochastic flows of diffeomorphisms, Kyushu J. Math. 53 (1999), 265–300.

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Fujiwara and H. Kunita, Canonical SDEs based on semimartingales with spatial parameters, Part II Inverse flows and backward SDEs, Kyushu J. Math. 53 (1999), 301–331.

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North Holland, Amsterdam. 1981.

    MATH  Google Scholar 

  11. K. Itô, Spectral type of the shift transfonnation of differential processes with stationary increments, Trans. Amer. Math. Soc. 81 (1956), 253–263.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, Springer, 1987.

    MATH  Google Scholar 

  13. H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, 1990.

    Google Scholar 

  14. H. Kunita, Stochastic flows with jumps and stochastic flows of diffeomorphisms. In: “Itô's Stochastic Calculus and Probability Theory.” N. Ikeda et al., Eds., Springer, 1996, 197–211.

    Google Scholar 

  15. H. Kunita. Representation of martingales with jumps and applications to mathematical finance, Stochastic Analysis and Related Topics in Kyoto, Advanced Studies in Pure Mathematics, 41 (2004), 209–232.

    MathSciNet  Google Scholar 

  16. H. Kunita, S. Watanabe, On square integrable martingales, Nagoya Math. J. 30 (1967), 209–245.

    MathSciNet  MATH  Google Scholar 

  17. R. Léandre, Flot d' une équation differentielle stochastique avec semimartingale directrice discontinue. Séminaire Probab. XIX, Lecture Notes in Math. 1123 (1985), 271–275.

    Google Scholar 

  18. S. I. Marcus, Modelling and approximations of stochastic differential equations driven by semimartingales, Stochastics 4 (1981), 223–745.

    MATH  Google Scholar 

  19. P. A Meyer, Un cours sur integrales stochastiques, Seminaire Proba. X, Lecture Notes in Math. 511 Springer, 1976, 246–400.

    Google Scholar 

  20. P. Protter, Stochastic Integration and Differential Equations. A New Approach, Applied Math. 21, Springer, 1992.

    Google Scholar 

  21. K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Carilbridge, UK, 1999.

    Google Scholar 

  22. D. W. Stroock, Markov Processes from K. Itô's Perspective, Annals of Mathematical Studies 155, Princeton and Oxford. (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Birkhäuser Boston

About this chapter

Cite this chapter

Kunita, H. (2004). Stochastic Differential Equations Based on Lévy Processes and Stochastic Flows of Diffeomorphisms. In: Rao, M.M. (eds) Real and Stochastic Analysis. Trends in Mathematics. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2054-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2054-1_6

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7397-4

  • Online ISBN: 978-1-4612-2054-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics