Skip to main content

Quaternionic Calculus for a Class of Initial Boundary Value Problems

  • Chapter
  • 1030 Accesses

Part of the book series: Progress in Mathematical Physics ((PMP,volume 34))

Abstract

We study Galpern—Sobolev equations with the help of a quaternionic operator calculus. Previous work is extended to the case of a variable dispersive term. We approximate the time derivative by forward finite differences. Solving the resulting stationary problems by means of a quaternionic calculus, we obtain representation formulae.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahmann H., Gürlebeck K., Shapiro M. and Sprössig W., On a modified Teodorescu transform, Integral Transforms and Special Functions, Vol. 12, Number 3 (2001), 213–226.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernstein S., Operator calculus for elliptic boundary value problems in unbounded domains, Zeitschrift f. Analysis u. Anwend. 10, 4 (1991), 447–460.

    MATH  Google Scholar 

  3. Bernstein S., Fundamental solutions of Dirac type operators, Banach Center Publications, Banach Center Symposium: Generalizations of Complex Analysis, May 30- July 1, 1994, Warsaw, 37 (1996), pp. 159–172

    Google Scholar 

  4. Delanghe R., Sommen F. and Souček V., Residues in Clifford analysis. In: Begehr H. and Jeffrey A. (eds.), Partial Differential Equations with Complex Analysis, Pitman Res. Notes in Math. Ser. 262 (1992), pp. 61–92

    Google Scholar 

  5. Gürlebeck K., Kähler U., Ryan J. and Sprössig W., Clifford analysis over unbounded domains, Advances in Applied Mathematics 19 (1997), 216–239.

    Article  MathSciNet  MATH  Google Scholar 

  6. Gürlebeck K., Hypercomplex factorization of the Helmholtz equation, Z. Anal. Anwend. 5 (1986), 125–131.

    MATH  Google Scholar 

  7. Gürlebeck K. and Sprössig W., Quaternionic Analysis and Boundary Value Problems, Birkhauser Verlag, Basel, 1990.

    MATH  Google Scholar 

  8. Gürlebeck K. and Sprössig W., Quaternionic and Clifford Calculus for Physicists and Engineers, John Wiley, Chichester, 1997.

    MATH  Google Scholar 

  9. Gürlebeck K. and Sprössig W., Representation theory for classes of initial value problems with quaternionic analysis, Math. Meth. AppL Sci. 25 (2002), 1371–1382.

    Article  MATH  Google Scholar 

  10. Gürlebeck K., Shapiro M. and Sprössig W., On a Teodorescu transform for a class of metaharmonic functions, J. Natural Geometry Vol. 21 (2002), 17–38.

    MATH  Google Scholar 

  11. Kaiser, G., Complex-distance potential theory and hyperbolic equations. In: Ryan J., Sprössig W. Clifford Analysis, Progress in Physics, Birkhauser, Boston, Basel, 2000

    Google Scholar 

  12. Karch G., Asymptotic behaviour of solutions to some pseudoparabolic equations, Math. Meth. Appl. Sci. 20 (1997), 271–289.

    Article  MathSciNet  MATH  Google Scholar 

  13. Kravchenko V. and Shapiro M., Integral Representations for Spatial Models of Mathematical Physics. Pitman Research Notes in Math. Series 351, 1996.

    Google Scholar 

  14. Ryan J., Complexified Clifford analysis. Complex Variables Theory and Appl. 1 (1982), 119–149

    MathSciNet  MATH  Google Scholar 

  15. Samarskij A.A., The Theory of Difference Methods, Moscow, Nauka, 1997 (in Russian).

    Google Scholar 

  16. Showalter R.E., Partial differential equations of Sobolev-Galpern type, Pac. J. Math. 31 (1969), 787–793.

    MathSciNet  MATH  Google Scholar 

  17. Sprössig S., On decomposition of the Clifford valued Hilbert space and their applications to boundary value problems, Advances in Applied Clifford Algebras Vol. 5, No. 2 (1995), 167–185.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Birkhäuser Boston

About this chapter

Cite this chapter

Sprössig, W. (2004). Quaternionic Calculus for a Class of Initial Boundary Value Problems. In: Abłamowicz, R. (eds) Clifford Algebras. Progress in Mathematical Physics, vol 34. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2044-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2044-2_9

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-3525-1

  • Online ISBN: 978-1-4612-2044-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics