Skip to main content

Noncommutative Physics on Lie Algebras, (ℤ2)n Lattices and Clifford Algebras

  • Chapter
Clifford Algebras

Part of the book series: Progress in Mathematical Physics ((PMP,volume 34))

Abstract

We survey noncommutative spacetimes with coordinates being enveloping algebras of Lie algebras. We also explain how to do differential geometry on noncommutative spaces that are obtained from commutative ones via a Moyal-product type cocycle twist, such as the noncommutative torus, θ-spaces and Clifford algebras. The latter are noncommutative deformations of the finite lattice (ℤ2)n and we compute their noncommutative de Rham cohomology and moduli of solutions of Maxwell’s equations. We exactly quantize noncommutative U(1)-Yang-Mills theory on ℤ2 × ℤ2 in a path integral approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Majid. Duality principle and braided geometry. Springer Lec. Notes in Phys. 447, 125–144, 1995.

    Article  MathSciNet  Google Scholar 

  2. A. Cannes. Noncommutative Geometry. Academic Press, 1994.

    Google Scholar 

  3. S. Majid and R. Deckl. Twisting of quantum differentials and the Planck scale Hopf algebra. Commun. Math. Phys. 205, 617–655, 1999.

    Article  MATH  Google Scholar 

  4. S. Majid. Hopf algebras for physics at the Planck scale. J. Classical and Quantum Gravity 5, 1587–1606, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  5. S.L. Woronowicz. Differential calculus on compact matrix pseudogroups (quantum groups). Commun. Math. Phys. 122, 125–170, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Brzeziński and S. Majid. Quantum group gauge theory on quantum spaces. Commun. Math. Phys. 157, 591–638, 1993. Erratum 167:235, 1995.

    Article  MATH  Google Scholar 

  7. S. Majid. Riemannian geometry of quantum groups and finite groups with nonuniversal differentials. Commun. Math. Phys. 225, 131–170, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Ngakeu, S. Majid and D. Lambert. Noncommutative Riemannian geometry of the alternating group A 4. J. Geom. Phys. 42, 259–282, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Majid. Ricci tensor and Dirac operator on C q [SL 2] at roots of unity. Lett. Math. Phys. 63, 39–54, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Majid. On q-Regularization. Int. J. Mod. Phys. A 5, 4689–4696, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Majid and H. Ruegg. Bicrossproduct structure of the κ-Poincaré group and noncommutative geometry. Phys. Lett. B 334, 348–354, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Lukierski, A. Nowicki, H. Ruegg and V.N. Tolstoy. q-Deformation of Poincaré algebra. Phys. Lett. B 271, p. 321, 1991.

    Article  MathSciNet  Google Scholar 

  13. G. Amelino-Camelia and S. Majid. Waves on noncommutative spacetime and gamma-ray bursts. Int. J. Mod. Phys. A 15, 4301–4323, 2000.

    MathSciNet  MATH  Google Scholar 

  14. G. Amelino-Camelia. Gravity-wave interferometers as quantum-gravity detectors Nature 398, p. 216, 1999.

    Article  Google Scholar 

  15. E. Batista and S. Majid. Noncommutative geometry of angular momentum space U(SU 2). J. Math. Phys. 44, 107–137, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  16. B.J. Schroer. Combinatorial quantization of Euclidean gravity in three dimensions, preprint math.QA/0006228.

    Google Scholar 

  17. S. Snyder. Quantized space-time Phys. Rev. 71 38–41, 1947.

    Article  MATH  Google Scholar 

  18. R. Oeckl. Untwisting noncommutative Rd and the equivalence of quantum field theories. Nucl. Phys. B 581, 559–574, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  19. N. Seiberg and E. Witten. String theory and noncommutative geometry. J. High En. Phys. 9909:032, 1999.

    Article  MathSciNet  Google Scholar 

  20. K. Bresser, F. Mueller-Hoissen, A. Dimakis, A. Sitarz. Noncommutative geometry of finite groups J. Phys. A 29, 2705–2736, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Majid and E. Raineri. Electromagnetism and gauge theory on the permutation group S 3. J. Geom. Phys. 44, 129–155, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Majid and T. Schucker. Z2 × Z2 lattice as a Connes-Lott-quantum group model. J. Geom. Phys. 43, 1–26, 2002.

    MathSciNet  MATH  Google Scholar 

  23. H. Albuquerque and S. Majid. Quasialgebra structure of the Octonions. J. Algebra 220, 188–224, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  24. H. Albuquerque and S. Majid. Clifford algebras obtained by twisting of group algebras. J. Pure Applied Algebra 171 133–148, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Dixon. Division Algebras: Octonions, Quaternions, Complex Numbers and the Algebraic Design of Physics. Kluwer, 1994.

    MATH  Google Scholar 

  26. S. Caenepeel, F. Van Oystaeyen. A note on generalized Clifford algebras and representations. Comm. in Algebra 17, 93–102, 1989.

    Article  MATH  Google Scholar 

  27. S. Majid. Foundations of Quantum Group Theory. Cambridge University Press, 1995.

    Book  MATH  Google Scholar 

  28. S. Majid. q-Euclidean space and quantum Wick rotation by twisting. J. Math. Phys. 35, 5025–5034, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Brzeziński. Remarks on bicovariant differential calculi and exterior Hopf algebras. Lett. Math. Phys. 27, p. 287, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Connes and M.A. Rieffel. Yang-Mills for noncommutative two-tori. AMS Contemp. Math. Series 62, 237–266, 1987.

    MathSciNet  Google Scholar 

  31. M. Rieffel. Deformation quantization for actions of Rd. Memoirs AMS 106, 1993.

    Google Scholar 

  32. A. Connes and G. Landi. Noncommutative manifolds, the instanton algebra and isospectral deformations. Commun. Math. Phys. 221, 141–159, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Sharz. Twist and spectral triples for isospectral deformations. Lett. Math. Phys. 58, 69–79, 2001.

    Article  MathSciNet  Google Scholar 

  34. J. Varilly. Quantum symmetry groups of noncommutative spheres. Commun. Math. Phys. 221, 511–523, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Connes and M. Dubois-Violette. Noncommutative finite-dimensional manifolds, I: Spherical manifolds and related examples. Commun. Math. Phys. 230, 539–579, 2002.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Birkhäuser Boston

About this chapter

Cite this chapter

Majid, S. (2004). Noncommutative Physics on Lie Algebras, (ℤ2)n Lattices and Clifford Algebras. In: Abłamowicz, R. (eds) Clifford Algebras. Progress in Mathematical Physics, vol 34. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2044-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2044-2_31

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-3525-1

  • Online ISBN: 978-1-4612-2044-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics