Skip to main content

Myocardial Perfusion Imaging: Detection of Coronary Artery Disease and Miscellaneous Clinical Applications

  • Chapter
Nuclear Cardiology and Correlative Imaging

Abstract

Several options exist for investigating myocardial ischemia, including exercise testing, stress echocardiography, nuclear perfusion imaging, and coronary angiography. Nuclear perfusion imaging is one of the most sensitive and specific methods for the noninvasive evaluation of myocardial ischemia. The standard criteria to define ischemia on rest/stress MPI is the presence of a stress-induced perfusion defect that reverses on the resting study. Other findings on MPI, associated with extensive coronary artery disease (CAD), include transient ischemic dilatation of the left ventricle (TID) and increased poststress pulmonary accumulation of the perfusion radiopharmaceuticals. (See Case 5.5.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maddahi J, Berman DS. Detection, evaluation and risk stratification of coronary artery disease by thallium-201 myocardial perfusion scintigraphy. In Depuey EG, Garcia EV, Berman DS (eds). Cardiac SPECT Imaging. Philadelphia: Lippincott Williams & Wilkins; 2001: 155–177.

    Google Scholar 

  2. Berman DS, Hayes SW, Germano G. Assessment of myocardial perfusion and viability with technetium-99m perfusion agents. In Depuey EG, Garcia EV, Berman DS (eds). Cardiac SPECT Imaging. Philadelphia: Lippincott Williams & Wilkins; 2001: 179–210.

    Google Scholar 

  3. Detre KM, Wright E, Murphy ML, Takaro T. Observer agreement in evaluating coronary angiograms. Circulation. 1975; 52: 979–986.

    PubMed  CAS  Google Scholar 

  4. Zir LM, Miller SW, Dinsmore RE, Gilbert JP, Harthorne JW. Interobserver variability in coronary angiography. Circulation. 1976; 53: 627–632.

    PubMed  CAS  Google Scholar 

  5. DeRouen TA, Murphy JA, Owen W. Variability in the analysis of coronary arteriograms. Circulation. 1977; 55: 324–328.

    PubMed  CAS  Google Scholar 

  6. Beauman GJ, Vogel RA. Accuracy of individual and panel interpretations of coronary arteriograms: implications for clinical decisions. J Am Coll Cardiol. 1990; 16: 108–113.

    PubMed  CAS  Google Scholar 

  7. Fleming RM, Kirkeeide RL, Smalling RW, Gould KL. Patterns in visual interpretation of coronary arteriograms as detected by quantitative coronary arteriography. J Am Coll Cardiol. 1991; 18: 945–951.

    PubMed  CAS  Google Scholar 

  8. Nissen SE. Shortcomings of coronary angiography and their implications in clinical practice. Cleve Clin J Med. 1999; 66: 479–485.

    PubMed  CAS  Google Scholar 

  9. Topol EJ, Nissen SE. Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation. 1995; 92: 2333–2342.

    PubMed  CAS  Google Scholar 

  10. Ellestad MH. The time has come to reexamine the gold standard when evaluating noninvasive testing. Am J Cardiol. 2001; 87: 100–101.

    PubMed  CAS  Google Scholar 

  11. Verna E, Ceriani L, Giovanella L, Binanghi G, Garancini S. “False-positive” myocardial perfusion scintigraphy findings in patients with angiographically normal coronary arteries: insights from intravascular sonography studies. J Nucl Med. 2000; 41: 1935–1940.

    PubMed  CAS  Google Scholar 

  12. Kjaer A, Meyer C, Nielsen FS, Parving HH, Hesse B. Dipyridamole, cold pressor test, and demonstration of endothelial dysfunction: a PET study of myocardial perfusion in diabetes. J Nucl Med. 2003; 44: 19–23.

    PubMed  CAS  Google Scholar 

  13. Tiatti P, Gragasso G, Monit LD, Setola E, Lucotti P, Fermo I, Paroni R, Galluccio E, Pozza G, Chierchia S, Margonato A. Acute intravenous L-arginine infusion decreases endothelin-1 levels and improves endothelial function in patients with angina pectoris and normal coronary arteriograms: correlation with asymmetric dimethylarginine levels. Circulation. 2003; 107: 429–436.

    Google Scholar 

  14. Cox ID, Clague JR, Bagger JP, Ward DE, Kaski JC. Endothelial dysfunction, subangiographic atheroma, and unstable symptoms in patients with chest pain and normal coronary arteriograms. Clin Cardiol. 2000; 23: 645–652.

    PubMed  CAS  Google Scholar 

  15. Zaret BL, Wackers FJT, Soufer R. Nuclear Cardiology. In Braunwald E (ed). Heart Disease. Philadelphia: Saunders; 1992: 276–311.

    Google Scholar 

  16. Gerson MC, Thomas SR, Van Heertum RL. Tomographic myocardial perfusion imaging. In Gerson MC (ed). Cardiac Nuclear Medicine. New York: McGraw Hill; 1991: 25–52.

    Google Scholar 

  17. Mahmarian JJ, Verani MS. Exercise thallium-201 perfusion scintigraphy in the assessment of coronary artery disease. Am J Cardiol. 1991; 67:2D–11D.

    PubMed  CAS  Google Scholar 

  18. Henkin RE, Kalousdian S, Kikkawa RM, et al. Diagnostic and therapeutic technology assessment (DATTA), myocardial perfusion imaging, utilizing single-photon emission-computed tomography (SPECT). Washington Manual of Therapeutic Technology. Washington DC, 1994: 2850.

    Google Scholar 

  19. Mahmarian JJ, Verani MS. Exercise thallium-201 perfusion scintigraphy in the assessment of coronary artery disease. Am J Cardiol. 1991; 67:2D–11D.

    PubMed  CAS  Google Scholar 

  20. Maddahi J, Kiat H, Friedman JD, et al. Technetium-99m-sestamibi myocardial perfusion imaging for evaluation of coronary artery disease. In Zaret BL, Beller GA (eds). Nuclear Cardiology: State of the Art and Future Directions. S. Louis: Mosby; 1993: 191–200.

    Google Scholar 

  21. Verani MS. Thallium-201 and technetium-99m perfusion agents: Where we are in 1992. In Zaret BL, Beller GA (eds). Nuclear Cardiology: State of the Art and Future Directions. St. Louis: Mosby; 1993: 191–200.

    Google Scholar 

  22. Azzarelli S, Galassi AR, Foti R, et al. Accuracy of 99m-tetrofosmin myocardial tomography in the evaluation of coronary artery disease. J Nucl Cardiol. 1999; 6: 183–189.

    PubMed  CAS  Google Scholar 

  23. Sharir T, Germano G, Kang X, et al. Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion SPECT: risk stratification by the amount of stress-induced ischemia and the poststress ejection fraction. J Nucl Med. 2001; 42: 831–837.

    PubMed  CAS  Google Scholar 

  24. Sharir T, Bacher-Stier C, Dhar S, et al. Identification of severe and extensive coronary artery disease by postexercise regional wall motion abnormalities in 99mTc sestamibi gated single-photon emission computed tomography. Am J Cardiol. 2000; 86: 1171–1175.

    PubMed  CAS  Google Scholar 

  25. Demer LL, Gould KL, Goldstein RA, et al. Assessment of coronary artery disease severity by positron emission tomography: comparison with quantitative arteriography in 193 patients. Circulation. 1989; 79: 825–835.

    PubMed  CAS  Google Scholar 

  26. Guidelines for the American College of Cardiology/American Heart Association task force on assessment of diagnostic and therapeutic cardiovascular procedures (Committee on Radionuclide Imaging), developed in collaboration with the American Society of Nuclear Cardiology. J Am Coll Cardiol. 1995;25:521–547.

    Google Scholar 

  27. Shelbert HR, Wisenberg G, Phelps ME, et al. Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilation. Detection of coronary artery disease in human beings with intravenous 13N ammonia and positron emission tomography. Am J Cardiol. 1982; 49: 1197–1207.

    Google Scholar 

  28. Gould KL, Goldstein RA, Mullani NA, et al. Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. Clinical feasibility of positron cardiac imaging without a cyclotron using generator-produced rubidium-82. J Am Coll Cardiol. 1986; 7: 775–789.

    PubMed  CAS  Google Scholar 

  29. Goldstein RA, Kirkeeide KL, Smalling RW, et al. Changes in myocardial perfusion reserve after PTCA: noninvasive assessment with positron tomography. J Nucl Med. 1987; 28: 1262–1267.

    PubMed  CAS  Google Scholar 

  30. Demer LL, Gould KL, Goldstein RA, Kirkeeide RL. Noninvasive assessment of coronary col-laterals in man by PET perfusion imaging. J Nucl Med. 1990; 31: 259–270.

    PubMed  CAS  Google Scholar 

  31. Demer LL, Gould KL, Goldstein RA, et al. Assessment of coronary artery disease severity by positron emission tomography: Comparison with quantitative arteriography in 193 patients. Circulation. 1989; 79: 825–835.

    PubMed  CAS  Google Scholar 

  32. Go RT, Marvick TH, MacIntyre WJ, et al. A prospective comparison of rubidium-82 PET and thallium-201 SPECT myocardial perfusion imaging utilizing a single dipyridamole stress in the diagnosis of coronary artery disease. J Nucl Med. 1990; 31: 1899–1905.

    PubMed  CAS  Google Scholar 

  33. Stewart RE, Schwaiger M, Molina E, et al. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol. 1991; 67: 1303–1310.

    PubMed  CAS  Google Scholar 

  34. Grover-McKay M, Ratib O, Schwaiger M, et al. Detection of coronary artery disease with positron emission tomography and rubidium-82. Am Heart J. 1992; 123: 646–652.

    PubMed  CAS  Google Scholar 

  35. Stewart RE, Schwaiger M, Molina E, et al. Comparison of rubidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of coronary artery disease. Am J Cardiol. 1991; 67: 1303–1310.

    PubMed  CAS  Google Scholar 

  36. Bezzera AJ, Prates JC, Didio LJ. Incidence and clinical significance of bridges of myocardium over the coronary arteries and their branches. Surg Radiol Anat. 1987; 9: 273–280.

    Google Scholar 

  37. Ferreira AG Jr, Trotter SE, Konig B Jr, et al. Myocardial bridges: morphological and functional aspects. Br Heart J. 1991; 66: 364–367.

    PubMed  Google Scholar 

  38. Noble J, Bourassa MG, Petitclerc R, et al. Myocardial bridging and milking effect on the left descending coronary artery: normal variant or obstruction. Am J Cardiol. 1976;37:993–999.

    PubMed  CAS  Google Scholar 

  39. Kramer JR, Kitazume H, Proudfit WL, et al. Clinical significance of isolated coronary bridges: benign and frequent condition involving the left descending coronary artery. Am Heart J. 1982; 103: 283–288.

    PubMed  CAS  Google Scholar 

  40. Tortoledo F. Stented bridge: another golden gate for the interventional cardiologist. Cathet Cardiovasc Interv. 2002; 56: 64–65.

    Google Scholar 

  41. Ge J, Erber R, Ruprecht HJ, et al. Comparison of intravascular ultrasound and angiography in the assessment of myocardial bridging. Circulation. 1994; 89: 1725–1732.

    PubMed  CAS  Google Scholar 

  42. Erbel R, Treese N, Alken G, et al. Provocation of myocardial bridging in patients with normal coronary arteries by nitroglycerin and orciprenalin. Eur Heart J. 1985; 6 (suppl): 71.

    Google Scholar 

  43. Ahmad M, Merry SL, Haibach H. Evidence of impaired myocardial perfusion and abnormal left ventricular function during exercise in patients with isolated systolic narrowings of the LAD artery. Am J Cardiol. 1981; 48: 832–836.

    PubMed  CAS  Google Scholar 

  44. Greenspan M, Iskadrian AS, Catherwood E, et al. Myocardial bridging of the LAD artery: Evaluation using exercise thallium-201 myocardial scintigraphy. Cathet Cardiovasc Diagn. 1980; 6: 173–180.

    PubMed  CAS  Google Scholar 

  45. Berry JF, von Mering GO, Schmalfuss C, et al. Systolic compression of the left descending coronary artery: a case series, review of the literature, and therapeutic options including stenting. Cathet Cardiovasc Interv. 2002; 56: 58–63.

    Google Scholar 

  46. Patel R, Bushnell DL, Wagner R, Stumbris R. Frequency of false-positive septal defects on adenosine/201Tl images in patients with LBBB. Nucl Med Commun. 1995; 16: 137–139.

    PubMed  CAS  Google Scholar 

  47. Hirzel HO, Senn M, Nuesch K, et al. Thallium 201 scintigraphy in complete LBBB. Am J Cardiol. 1984; 53: 764–769.

    PubMed  CAS  Google Scholar 

  48. DePuey EG, Guertler-Krawczynska E, Robbins WL. Thallium 201 SPECT in coronary artery disease patients with LBBB. J Nucl Med. 1988; 29: 1479–1485.

    PubMed  CAS  Google Scholar 

  49. Larcos G, Brown ML, Gibbons RJ. Role of dipyridamole thallium-201 imaging in patients with LBBB. Am J Cardiol. 1991; 68: 1097–1098.

    PubMed  CAS  Google Scholar 

  50. Larcos G, Gibbons RJ, Brown ML. Diagnostic accuracy of exercise thallium-201 single-photon emission computed tomography in patients with left bundle branch block. Am J Cardiol. 1991; 68: 756–760.

    PubMed  CAS  Google Scholar 

  51. Weiss AT, Berman DS, Lew AS, et al. Transient ischemic dilatation of the left ventricle on stress thallium-201 scintigraphy: a marker of severe and extensive coronary artery disease. J Am Coll Cardiol. 1987; 9: 752–759.

    PubMed  CAS  Google Scholar 

  52. McLaughlin MG. Transient ischemic dilation: A powerful diagnostic and prognostic finding of stress myocardial perfusion imaging. J Nucl Cardiol. 2002 Nov-Dec;9(6):663–667.

    PubMed  Google Scholar 

  53. Kinoshita N, Sugihara H, Adachi Y, et al. Assessment of transient left ventricular dilatation on rest and exercise on 99mTc tetrofosmin myocardial SPECT. Clin Nucl Med. 2002; 27:34–39.

    PubMed  Google Scholar 

  54. Mazzanti M, Germano G, Kiat H, et al. Identification of severe and extensive coronary artery disease by automatic measurement of transient ischemic dilatation of the left ventricle in dual-isotope myocardial perfusion SPECT. J Am Coll Cardiol. 1996; 27 (7): 1612–1620.

    PubMed  CAS  Google Scholar 

  55. Daou D. Identification of extensive coronary artery disease: incremental value of exercise 201Tl SPECT to clinical and stress test variables. J Nucl Cardiol. 2002;Mar-Apr;9(2):161–168.

    PubMed  Google Scholar 

  56. Besletti A, Di Leo C, Alessi A, et al. Poststress end-systolic left ventricular dilation: a marker of endocardial post-ischemic stunning. Nucl Med Commun. 2001; 22: 685–698.

    Google Scholar 

  57. Chouraqui P, Rodriguez EA, Berman DS, et al. Significance of dipyridamole-induced transient dilatation of the left ventricle during thallium-201 scintigraphy in suspected coronary artery disease. Am J Cardiol. 1990; 66: 689–694.

    PubMed  CAS  Google Scholar 

  58. Toyama T, Caner BE, Tamaki N, et al. Transient ischemic dilatation of the left ventricle observed on dipyridamole-stressed thallium-201 scintigraphy. Kaku Igaku. 1993; 30: 605–611.

    PubMed  CAS  Google Scholar 

  59. Kristman JN, Ficaro EP, Corbett JR. Post-stress LV dilation: the effect of imaging protocol, gender and attenuation correction. J Nucl Med. 2001; 42 (Suppl): 50 P.

    Google Scholar 

  60. McClellan JR, Travin MI, Herman SD, et al. Prognostic importance of scintigraphic left ventricular cavity dilation during intravenous dipyridamole technetium-99m sestamibi myocardial tomographic imaging in predicting coronary events. Am J Cardiol. 1997;79:600–605.

    PubMed  CAS  Google Scholar 

  61. Homma S, Kaul S, Boucher CA. Correlates of lung/heart ratio of thallium-201 in coronary artery disease. J Nucl Med. 1987;28:1531–1535.

    PubMed  CAS  Google Scholar 

  62. Bacher-Stier C, Sharir T, Kavanagh PB, et al. Postexercise lung uptake of 99mTc-sestamibi determined by a new automatic technique: validation and application in detection of severe and extensive coronary artery disease and reduced left ventricular function. J Nucl Med. 2000; 41: 1190–1197.

    PubMed  CAS  Google Scholar 

  63. Hansen CL, Cen P, Sanchez B, Robinson R. Comparison of pulmonary uptake with transient cavity dilation after dipyridamole 201Tl perfusion imaging. J Nucl Cardiol. 2002;9:47–51.

    PubMed  Google Scholar 

  64. Sanders GP, Pinto DS, Parker JA, et al. Increased resting 201Tl lung-to-heart ratio is associated with invasively determined measures of left ventricular dysfunction, extent of coronary artery disease, and rest myocardial perfusion abnormalities. J Nucl Cardiol. 2003; 10: 140–147.

    PubMed  Google Scholar 

  65. Barr SA, Jain D, Wackers FJ, et al. Tetrofosmin Phase III multicenter study group: Are there correlates of increased thallium uptake on planar tetrofosmin perfusion imaging? Circulation. 1993;88:Suppl I-582.

    Google Scholar 

  66. Kaminek M, Mysliveck M, Skvarilova M, et al. Increased prognostic value of combined myocardial perfusion SPECT imaging and the quantification of lung 201Tl uptake. Clin Nucl Med. 2002; 27: 255–260.

    PubMed  Google Scholar 

  67. Vitola JV, Brambatti JC, Caligaris F, et al. Exercise supplementation to dipyridamole prevents hypotension, improves electrocardiogram sensitivity, and increases heart-to liver activity ratio on 99mTc sestamibi imaging. J Nucl Cardiol. 2001; 8: 652–659.

    PubMed  CAS  Google Scholar 

  68. Johnson LL, Verdesca SA, Aude WY, et al. Postischemic stunning can affect left ventricular ejection fraction and regional wall motion on post-stress gated sestamibi tomograms. J Am Coll Cardiol. 1997; 30: 1641–1648.

    PubMed  CAS  Google Scholar 

  69. Paul AK, Hasegawa S, Yoshioka J, et al. Exercise-induced stunning continues for at least one hour: evaluation with quantitative gated single-photon emission tomography. Eur J Nucl Med. 1999; 26: 410–415.

    PubMed  CAS  Google Scholar 

  70. Lee DS, Yog DS, Chung JK, et al. Transient prolonged stunning induced by dipyridamole and shown on 1- and 24-hours poststress 99mTc-MIBI gated SPECT. J Nucl Med. 2000; 41: 27–35.

    PubMed  CAS  Google Scholar 

  71. Paul AK, Hasegawa S, Yoshioka J, et al. Characteristics of regional myocardial stunning after exercise in gated myocardial SPECT. J Nucl Cardiol. 2002; 9: 388–394.

    PubMed  Google Scholar 

  72. Emmett L, Iwanochko RM, Freeman MR, et al. Reversible regional wall motion abnormalities on exercise technetium-99m-gated cardiac single photon emission computed tomography predict high-grade angiographic stenoses. J Am Coll Cardiol. 2002; 39: 991–998.

    PubMed  Google Scholar 

  73. Heiba SI, Santiago J, Mirzaitehrane M, et al. Transient postischemic stunning evaluation by stress gated 201Tl SPECT myocardial imaging: Effect on systolic left ventricular function. J Nucl Cardiol. 2002; 9: 482–490.

    PubMed  Google Scholar 

  74. Hecht HS, Hopkins JM, Rose JG, et al. Reverse redistribution: worsening of 201 thallium myocardial images from exercise to redistribution. Radiology. 1981; 140: 177–181.

    PubMed  CAS  Google Scholar 

  75. Weiss AT, Maddahi J, Lew AS, et al. Reverse redistribution of 201Thallium: a sign of nontrasmural myocardial infarction with patency of the infarct related coronary artery. J Am Coll Cardiol. 1986; 7: 61–67.

    PubMed  CAS  Google Scholar 

  76. Arrighi JA, Soufer R. Reverse redistribution: is it clinically relevant or a washout? J Nucl Cardiol. 1998; 5: 195–201.

    PubMed  CAS  Google Scholar 

  77. Silberstein EB, Devries DF, Reverse redistribution phenomenon in thallium-201 stress tests: angiographic correlation and clinical significance. J Nucl Med. 1985: 26; 707–710.

    PubMed  CAS  Google Scholar 

  78. Shih WJ, Miller K, Stipp V. Reverse redistribution on dynamic exercise and dipyridamole stress technetium-99m-MIBI myocardial SPECT. J Nucl Med. 1995; 36: 2053–2055.

    PubMed  CAS  Google Scholar 

  79. Frescura C, Basso C, Thiene G, et al. Anomalous origin of coronary arteries and risk of sudden death: a study based on an autopsy population of congenital heart disease. Hum Pathol. 1998; 29: 689–695.

    PubMed  CAS  Google Scholar 

  80. Roberts WC. Major anomalies of coronary arterial origin seen in adulthood. Am Heart J. 1986; 111: 941–962.

    PubMed  CAS  Google Scholar 

  81. Malec E, Zajac A, Mikuta M. Surgical repair or anomalous origin of the coronary artery from the pulmonary artery in children. Cardiovasc Surg. 2001; 9 (June): 292–298.

    PubMed  CAS  Google Scholar 

  82. Nair KK, Zisman LS, Lader E, Dimova A, Canver CC. Heart transplant for anomalous origin of left coronary artery from pulmonary artery. Ann Thorac Surg. 2003; 75: 282–285.

    PubMed  Google Scholar 

  83. Pandey R, Ciotti G, Pozzi M. Anomalous origin of the left coronary artery from the pulmonary artery: results of surgical correction in five infants. Ann Thorac Surg. 2002;74:1625–1630.

    PubMed  Google Scholar 

  84. Huddleston CB, Balzer DT, Mendelokk EM. Repair of anomalous left main coronary artery arising from the pulmonary artery in infants: long-term impact on the mitral valve. Ann Thorac Surg. 2001; 71: 1985–1989.

    PubMed  CAS  Google Scholar 

  85. Ando M, Mee RB, Duncan BW, Drummond-Webb JJ, Seshadri SG, Igor Mesia CI. Creation of a dual-coronary system for anomalous origin of the left coronary artery from the pulmonary artery utilizing the trapdoor flap method. Eur J Cardiothorac Surg. 2002 Oct; 22: 576–581.

    PubMed  Google Scholar 

  86. Brickner ME, Hillis LD, Lange LA. Congenital heart disease in adults. N Engl J Med. 2000 Feb; 342 (5): 334–342.

    PubMed  CAS  Google Scholar 

  87. Atik E. Transposição das grandes artérias. Avaliação dos resultados e da conduta atual. Arq Bras Cardiol. 2000; 75 (2): 91–93.

    PubMed  CAS  Google Scholar 

  88. Triedman JK. Arrhythmias in adults with congenital heart disease. Heart. 2002;87:383–389.

    PubMed  Google Scholar 

  89. Hornung TS, Bernard EJ, Jaeggi ET, Howman-Giles RB, Celermajer DS, Hawker RE. Myocardial perfusion defects and associated ventricular dysfunction in congenitally corrected transposition of the great arteries. Heart. 1998; 80: 322–326.

    PubMed  CAS  Google Scholar 

  90. Lubiszewska B, Gosiewska E, Hoffman P, et al. Myocardial perfusion and function of the systemic right ventricle in patients after atrial switch procedure for complete transposition: long term follow-up. J Am Coll Cardiol. 2000; 36: 1365–1370.

    PubMed  CAS  Google Scholar 

  91. Millane T, Bernard EJ, Jaeggi E, et al. Role of ischemia and infarction in late right ventricular dysfunction after atrial repair of transposition of the great arteries. J Am Coll Cardiol. 2000; 35: 1661–1668.

    PubMed  CAS  Google Scholar 

  92. Nothnagel H. Angina pectoris vasomotoria. Dtsch Arch Klin Med. 1867; 3: 309.

    Google Scholar 

  93. Prinzmetal M, et al. Angina pectoris I. The variant form of angina pectoris. Am J Med. 1959; 27: 375.

    PubMed  CAS  Google Scholar 

  94. MacAlpin RN. Relation of coronary arterial spasm to the sites of organic stenosis. Am J Cardiol. 1980; 46: 143–153.

    PubMed  CAS  Google Scholar 

  95. MacAlpin RN. Correlation of the location of coronary arterial spasm with the lead distribution of ST segment elevation during variant angina. Am Heart J. 1980; 99: 555–564.

    PubMed  CAS  Google Scholar 

  96. Bertrand ME, LaBlanche JM, Tilmant PY, et al. Frequency of provoked coronary arterial spasm in 1089 consecutive patients undergoing coronary arteriography. Circulation. 1982:65:1299–1306.

    PubMed  CAS  Google Scholar 

  97. Fujita H, Yamabe H, Yokoyama M. Dipyridamole-induced reversible thallium-201 defects in patients with vasospastic angina and nearly normal coronary arteries. Clin Cardiol. 2000; 23: 24–30.

    PubMed  CAS  Google Scholar 

  98. Backman C, Holm S, Linderholm H. Reaction to cold of patients with coronary insufficiency. Ups J Med Sci. 1979; 84: 181–187.

    PubMed  CAS  Google Scholar 

  99. Lassvik C, Areskog NH. Effects of various environmental temperatures on effort angina. Ups J Med Sci. 1979; 84: 173–180.

    PubMed  CAS  Google Scholar 

  100. Hines EA, Brown GE. The cold pressor test for measuring the reactivity of the blood pressure: data concerning 571 normal and hypertensive subjects. Am Heart J. 1936; 11: 1–9.

    Google Scholar 

  101. Robertson D, Johnson GA, Robertson RM, et al. Comparative assessment of stimuli that release neuronal and adrenomedullary catecholamines in man. Circulation. 1979; 59: 637–643.

    PubMed  CAS  Google Scholar 

  102. Diagnosis and management of patients with unstable angina. In Fuster V, Alexander RW, O’Rourke RA (eds). Hurst’s The Heart, 10th edition. New York: McGraw Hill; 2001: 1263–1266.

    Google Scholar 

  103. Faber TL, Cooke CD, Folks RD, et al. Left ventricular function and perfusion from gated SPECT perfusion images: an integrated method. J Nucl Med. 1999; 40: 650–659.

    PubMed  CAS  Google Scholar 

  104. Germano G, Kavanagh PB, Waechter P, et al. A new algorithm for the quantitation of myocardial perfusion SPECT I technical principles and reproducibility. J Nucl Med. 2000; 41: 712–719.

    PubMed  CAS  Google Scholar 

  105. Nichols K, Santana CA, Folks R, et al. Comparison between ECTb and QGS for assessment of left ventricular function from gated myocardial perfusion SPECT. J Nucl Cardiol. 2002; 9: 285–293.

    PubMed  Google Scholar 

  106. Sharir T, Germano G, Kavanah PB, et al. Incremental prognostic value of post-stress left ventricular ejection fraction and volume by gated myocardial perfusion single photon emission tomography. Circulation. 1999; 100: 1445–1550.

    Google Scholar 

  107. Wackers JTH. Myocardial perfusion imaging. In Sandler MP, Coleman RD, Wackers JTH, Patton JA, Gottschalk A, Hoffer PB (eds). Diagnostic Nuclear Medicine, 4th ed. Baltimore: Williams & Wilkins; 2002:273–317.

    Google Scholar 

  108. Germano G, Erel J, Lewin H, et al. Automatic quantitation of regional myocardial wall motion and thickening from gated technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol. 1997; 30: 1360–1367.

    PubMed  CAS  Google Scholar 

  109. Sharir T, Berman DS, Waechter PB, et al. Quantitative analysis of regional motion and thickening by gated myocardial perfusion SPECT: Normal heterogeneity and criteria for abnormality. J Nucl Med. 2001; 42: 1630–1638.

    PubMed  CAS  Google Scholar 

  110. Germano G, Kavanagh PB, Waechter PB, et al. A new algorithm for the quantitation of myocardial perfusion SPECT. I. theoretical aspects. J Nucl Med. 2000; 41: 712–719.

    PubMed  CAS  Google Scholar 

  111. Sharir T, Germano G, Waechter PB, et al. A new algorithm for the quantitation of myocardial perfusion SPECT. II. Validation and diagnostic yield. J Nucl Med. 2000; 41: 720–727.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, LLC

About this chapter

Cite this chapter

Vitola, J.V., Delbeke, D., Smith, C.A., Neto, C.C.P., Martin, W.H., Habibian, M.R. (2004). Myocardial Perfusion Imaging: Detection of Coronary Artery Disease and Miscellaneous Clinical Applications. In: Vitola, J.V., Delbeke, D. (eds) Nuclear Cardiology and Correlative Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2038-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2038-1_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-20707-0

  • Online ISBN: 978-1-4612-2038-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics