Skip to main content

Stress Modalities to Evaluate Myocardial Perfusion

  • Chapter
Nuclear Cardiology and Correlative Imaging

Abstract

As discussed in Chapter 1, atherosclerotic lesions appear early in life.1,2 Considering its high incidence, which only increases with aging,3 the active search for coronary lesions, in the asymptomatic general population, does not seem reasonable. Lesions will often be found but will not necessarily be affecting myocardial perfusion in a significant way. Preservation of perfusion relates to other factors, including (1) the capacity of coronary vessels to dilate, known as coronary blood flow reserve (CBFR) and (2) the existence of a complex net of collateral vessels at the microcirculatory level. Whether coronary lesions will adversely affect myocardial blood flow (MBF) depends highly on the impact they have on CBFR and the existence or absence of good-quality collateral vessels. Evaluation of MBF, under stress, helps to determine the presence of coronary artery disease (CAD) affecting CBFR. The extent of myocardial ischemia and the degree of left ventricular dysfunction are key variables for determining prognosis that can be evaluated in nuclear cardiology using myocardial perfusion imaging (MPI). To test CBFR in nuclear cardiology, several stress modalities can be applied, including exercise, dipyridamole, adenosine, exercise combined with dipyridamole or adenosine, and dobutamine. Other less frequent forms of stress such as arbutamine, cardiac pacing, mental stress, and the cold pressor test, have also been used. These stress modalities are reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Enos WF, Holmes RH, Beyer J. Coronary disease among United States soldiers killed in action in Korea: preliminary report. JAMA 1986; 256: 2859–2862.

    Article  PubMed  CAS  Google Scholar 

  2. McNamara JJ, Molot MA, Stremple JF, Cutting RT. Coronary artery disease in combat casualties in Vietnam. JAMA. 1971;216:1185–1187.

    Article  PubMed  CAS  Google Scholar 

  3. Tuzcu EM, Kapadia SR, Tutar E, et al. High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults— evidence from intravascular ultrasound. Circulation 2001; 103: 2705–2710.

    PubMed  CAS  Google Scholar 

  4. Gibbons RJ. ACC/AHA 2002 guidelines update for exercise testing. http://www.acc.org.

  5. Fletcher GF, Balagy G, Froelicher VF, et al. Exercise standards: a statement for healthcare professionals from the American Heart Association writing group—special report. Circulation 1995; 91: 580–622.

    PubMed  CAS  Google Scholar 

  6. Stuart RJ, Ellestad MH. National survey of exercise stress testing facilities. Chest 1980; 77: 94–97.

    Article  PubMed  Google Scholar 

  7. Borg GA. Psychophysical basis of perceived exertion. Med Sci Sports Exerc. 1982;14:377–381.

    PubMed  CAS  Google Scholar 

  8. Berman DS, Hayes SW, Germano G. Assessment of myocardial perfusion and viability with technetium-99m perfusion agents. In Depuey EG, Garcia EV, Berman DS (eds). Cardiac SPECT Imaging Philadelphia: Lippincott Williams & Wilkins; 2001: 179–210.

    Google Scholar 

  9. Mark DB, Hlatky MA, Harrell FE Jr, et al. Exercise treadmill score for predicting prognosis in coronary artery disease. Ann Intern Med. 1987; 106: 793–800.

    PubMed  CAS  Google Scholar 

  10. Hachamovitch R, Berman DS, Kiat H, et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification. Circulation 1996; 93 (5): 905–914.

    PubMed  CAS  Google Scholar 

  11. Myers J, Prakash M, Froelicher V, et al. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002; 336 (11): 793–801.

    Article  Google Scholar 

  12. Metra M, Faggiano P, D’Aloi, et al. Use of cardiopulmonary exercise testing with hemodynamic monitoring in the prognostic assessment of ambulatory patients with chronic heart failure. J Am Coll Cardiol. 1999;33:943–950.

    Article  PubMed  CAS  Google Scholar 

  13. Travin MI, Wexler JP. Pharmacological stress testing. Semin Nucl Med. 1999; 29: 298–318.

    Article  Google Scholar 

  14. Cohen MC. A snapshot of nuclear cardiology in the United States. Am Soc Nucl Cardiol Newsletter 1998; 5: 13.

    Google Scholar 

  15. Smits P, Corstens FHM, Aengevaeren WRM, Wackers FJT, Thien T. False negative dipyridamole-thallium-201 myocardial imaging after caffeine ingestion. J Nucl Med. 1991;32:1538–1541.

    PubMed  CAS  Google Scholar 

  16. Henzlova M, Squire A, Kim-Schuleger L, et al. Screening for coronary artery disease prior to liver transplantation. J Nucl Cardiol. 2003; 10(1):S-54.

    Google Scholar 

  17. O’Byrne, Rodriguez EA, Maddahi J, et al. Comparison of myocardial washout rate of thallium-201 between rest, dipyridamole with and without aminophylline, and exercise states in normal subjects. Am J Cardiol. 1989;64:1022–1028.

    Article  PubMed  Google Scholar 

  18. Wilson RF, White CW. Intracoronary papaverine: an ideal coronary vasodilator for studies of the coronary circulation in conscious humans. Circulation 1986, 73: 444–451.

    Article  PubMed  CAS  Google Scholar 

  19. Picano E, Lattanzi F, Masini M, Distante A, L’Abbate A. High dose dipyridamole echocardiography test in effort angina pectoris. J Am Coll Cardiol.. 1986; 8: 848–854.

    Article  PubMed  CAS  Google Scholar 

  20. Lette J, Tatum JL, Fraser S, et al. Safety of dipyridamole testing in 73,806 patients: the multicenter dipyridamole safety study. J Nucl Cardiol. 1995; 2: 3–17.

    Article  PubMed  CAS  Google Scholar 

  21. Ranhosky A, Kempthorne-Rawson J. The safety of intravenous dipyridamole thallium myocardial perfusion imaging: intravenous dipyridamole thallium imaging study group. Circulation 1990; 81: 1205–1209.

    Article  PubMed  CAS  Google Scholar 

  22. Hachamovitch RJ, Hayes S, Friedman JD, et al. Determinants of risk and its temporal variation in patients with normal stress myocardial perfusion scans—what is the warranty period of a normal scan? J Am Coll Cardiol. 2003;41:1329–1340.

    Article  Google Scholar 

  23. Feldman RL, Nichols WM, Pepine CJ, Conti CR. Acute effects of intravenous dipyridamole on regional coronary hemodynamics and metabolism. Circulation 1981; 64: 333–334.

    Article  PubMed  CAS  Google Scholar 

  24. Treuth MG, Reyes GA, He ZX, et al. Tolerance and diagnostic accuracy of an abbreviated adenosine infusion for myocardial scintigraphy: a randomized prospective study. J Nucl Cardiol. 2001; 8: 548–554.

    Article  PubMed  CAS  Google Scholar 

  25. Abreu A, Mahmarian JJ, Nishimura S, et al. Tolerance and safety of pharmacologic coronary vasodilation with adenosine in association with thallium-201 scintigraphy in patients with coronary artery disease. J Am Coll Cardiol. 1991; 18: 730–735.

    Article  PubMed  CAS  Google Scholar 

  26. Cerqueira MD, Verani MS, Schwaiger M, et al. Safety profile of adenosine stress perfusion imaging: results from the Adenoscan multicenter trial registry. J Am Coll Cardiol. 1994; 23: 384–390.

    Article  PubMed  CAS  Google Scholar 

  27. Johnston DL. Hemodynamic responses and adverse effects associated with adenosine and dipyridamole pharmacologic stress testing: a comparison in 2000 patients. Mayo Clin Proc 1995; 70: 331–336.

    Article  PubMed  CAS  Google Scholar 

  28. Coyne EP, Belvedere DA, Vande-Streek PR, et al. Thallium-201 scintigraphy after intravenous infusion of adenosine compared with exercise thallium testing in the diagnosis of coronary artery disease. J Am Coll Cardiol. 1991; 17 (6): 1289–1294.

    Article  PubMed  CAS  Google Scholar 

  29. Verani MS, Mahmarian JJ, Hisxon JB, et al. Diagnosis of coronary artery disease by controlled coronary vasodilation with adenosine and thallium-201 scintigraphy in patients unable to exercise. Circulation. 1990;82(1):80–87.

    Article  PubMed  CAS  Google Scholar 

  30. O’Keefe JH Jr, Bateman TM, Silvestri R, et al. Safety and diagnostic accuracy of adenosine thallium-201 scintigraphy in patients unable to exercise and those with left bundle branch block. Am Heart J. 1992; 124 (3): 614–621.

    Article  PubMed  Google Scholar 

  31. Klodas E, Miller TD, Christian TF, et al. Prognostic significance of ischemic electrocardiographic changes during vasodilator stress testing in patients with normal SPECT images. J Nucl Cardiol. 2003; 10: 4–8.

    Article  PubMed  Google Scholar 

  32. Abbott BG, Afshar M, Berger AK, Wackers FJ. Prognostic significance of ischemic electrocardiographic changes during adenosine infusion in patients with normal myocardial perfusion imaging. J Nucl Cardiol. 2003; 10: 9–16.

    Article  PubMed  Google Scholar 

  33. Vitola JV, Brambatti JC, Caligaris F, et al. Exercise supplementation to dipyridamole prevents hypotension, improves electrocardiogram sensitivity, and increases heart-to liver activity ratio on Tc-99m sestamibi imaging. J Nucl Cardiol. 2001; 8: 652–659.

    Article  PubMed  CAS  Google Scholar 

  34. Elliot MD, Holly TA, Leonard SM, Hendel RC. Impact of an abbreviated adenosine protocol incorporating adjunctive treadmill exercise on adverse effects and image quality in patients undergoing stress myocardial perfusion imaging. J Nucl Cardiol. 2000; 7: 584–589.

    Article  Google Scholar 

  35. Samady H, Wackers FJ, Joska TM, et al. Pharmacologic stress perfusion imaging with adenosine: role of simultaneous low-level treadmill exercise. J Nucl Cardiol. 2002; 9: 188–196.

    Article  PubMed  Google Scholar 

  36. Stein L, Burt R, Oppenheim B, Schauwecker D, Fineberg N. Symptom-limited arm exercise increases detection of ischemia during dipyridamole tomographic thallium stress testing in patients with coronary artery disease. Am J Cardiol. 1995; 75: 568–572.

    Article  PubMed  CAS  Google Scholar 

  37. Verzijlbergen JF, Vermeersch PH, Laarman Ascoop CA. Inadequate exercise leads to suboptimal imaging after dipyridamole combined with low-level exercise unmasks ischemia in symptomatic patients with non-diagnostic thallium-201 scans who exercise submaximally. J Nucl Med. 1991; 32: 2071–2078.

    PubMed  CAS  Google Scholar 

  38. Taillefer R. Technetium-99m sestamibi myocardial imaging: same day rest-stress studies and dipyridamole. Am J Cardiol. 1990;66:80E–84E.

    Article  PubMed  CAS  Google Scholar 

  39. Bergman H, Bjorntorp P, Conradson TB, Fahlen M, Stenberg J, Varnauskas E. Enzymatic and circulatory adjustments to physical training in middle aged men. Eur J Clin Invest 1973; 3: 414–418.

    Article  PubMed  CAS  Google Scholar 

  40. Primeau M, Taillefer R, Essiambre R, Lambert R, Honos G. Technetium 99m sestamibi myocardial perfusion imaging: comparison between treadmill, dipyridamole and transesophageal atrial pacing “stress” tests in normal subjects. Eur J Nucl Med. 1991; 18: 247–251.

    Article  PubMed  CAS  Google Scholar 

  41. Casale PN, Guiney TE, Strauss W, Boucher CA. Simultaneous low level treadmill exercise and intravenous dipyridamole stress thallium imaging. Am J Cardiol. 1988; 62: 799–802.

    Article  PubMed  CAS  Google Scholar 

  42. Ignaszewski AP, McCormick LX, Heslip PG, McEwan AJ, Humen DP. Safety and clinical utility of combined intravenous dipyridamole/ symptom-limited exercise stress test with thallium-201 imaging in patients with known or suspected coronary artery disease. J Nucl Med. 1993; 34: 2053–2061.

    PubMed  CAS  Google Scholar 

  43. Laarman G, Niemeyer MG, Van Der Wall EE, Verzijlbergen FJ, Bruschke AV, Ascoop CA. Dipyridamole thallium testing: noncardiac side effects, cardiac effects, electrocardiographic changes and hemodynamic changes after dipyridamole infusion with or without exercise. Int J Cardiol. 1988; 20: 231–238.

    Article  PubMed  CAS  Google Scholar 

  44. Hashimoto A, Palmer EL, Scott JA, Abraham SA, Fischman AJ, Force TL, et al. Complications of exercise and pharmacologic stress tests: differences in younger and elderly patients. J Nucl Cardiol. 1999; 6: 612–619.

    Article  PubMed  CAS  Google Scholar 

  45. Thomas GS, Prill NV, Majmundar H, et al. Treadmill exercise during adenosine infusion is safe, results in fewer adverse reactions, and improves myocardial perfusion image quality. J Nucl Cardiol. 2000; 7 (5): 439–446.

    Article  PubMed  CAS  Google Scholar 

  46. Pennell DJ, Mavrogeni SI, Forbat SM, et al. Adenosine combined with dynamic exercise for myocardial perfusion imaging. J Am Coll Cardiol. 1995; 25 (6): 1300–1309.

    Article  PubMed  CAS  Google Scholar 

  47. Vitola JV, Ludwig V, Cunha Pereira Neto C, et al. Exercise and dipyridamole combined myocardial scintigraphy allows early evaluation of perfusion and function. J Nucl Cardiol. 2003; 10(1)S:87.

    Article  Google Scholar 

  48. Ebersole DG, Heironimus J, Toney MO, Billingsley J. Comparison of exercise and adenosine technetium—99m sestamibi myocardial scintigraphy for diagnosis of coronary artery disease in patients with left bundle branch block. Am J Cardiol. 1993; 71: 450–453.

    Article  PubMed  CAS  Google Scholar 

  49. Ellestad MH (ed). Predictive implication. In Stress Testing: Principles and Practice. New York University Press; 2003: 271–307.

    Google Scholar 

  50. Holly TA, Satran A, Bromet DS, et al. The impact of adjunctive adenosine infusion during exercise myocardial perfusion imaging: results of both exercise and adenosine stress test. J Nucl Cardiol. 2003; 10: 291–296.

    Article  PubMed  Google Scholar 

  51. Geleijnse ML, Elhendy A, Fioretii PM, Roelandt JR. Dobutamine stress myocardial perfusion imaging. J Am Coll Cardiol. 2000; 36 (7): 2017–2020.

    Article  PubMed  CAS  Google Scholar 

  52. Tuttle RR, Mills J. Dobutamine: development of a new catecholamine to selectively increase cardiac contractility. Circ Res. 1975; 36: 185–195.

    PubMed  CAS  Google Scholar 

  53. Leier CV, Heban PT, Huss P, et al. Comparative systemic and regional hemodynamic effects of dopamine and dobutamine in patients with cardiomyopathic heart failure. Circulation 1978; 58: 466–475.

    PubMed  CAS  Google Scholar 

  54. Mason JR, Palac RT, Freeman ML, et al. Thallium scintigraphy during dobutamine infusion: non exercise-dependent screening test for coronary disease. Am Heart J. 1984; 107: 481–485.

    Article  PubMed  CAS  Google Scholar 

  55. Palac RT, Coombs BJ, Kudenchuk PJ, et al. Two-dimensional echocardiography during dobutamine infusion—comparison with exercise testing in evaluation of coronary disease. Circulation. 1984;70 Suppl II:184.

    Google Scholar 

  56. Secknus MA, Marwick TH. Evolution of dobutamine echocardiography protocols and indications: safety and side effects in 3001 studies over 5 years. J Am Coll Cardiol. 1997; 29: 1234–1240.

    Article  PubMed  CAS  Google Scholar 

  57. Leier CV, Unverferth DV. Drugs five years later: dobutamine. Ann Intern Med. 1983; 99: 490–496.

    PubMed  CAS  Google Scholar 

  58. Kates RE, Leier CV. Dobutamine phamacokinetics in severe heart failure. Clin Pharmacol Ther 1978; 24: 537–541.

    PubMed  CAS  Google Scholar 

  59. Raza JA, Reeves WC, Movahed A. Pharmacological stress agents for evaluation of ischemic heart disease. Int J Cardiol. 2001; 81 (2–3): 157–167.

    Article  Google Scholar 

  60. Tadamura E, Iida H, Matsumoto K, et al. Comparison of myocardial blood flow during dobutamine-atropine infusion with that after dipyridamole administration in normal men. J Am Coll Cardiol. 2001; 37: 130–136.

    Article  PubMed  CAS  Google Scholar 

  61. Cancer B, Karanfil A, Uysal U. Effect of an additional atropine injection during dobutamine infusion for myocardial SPECT. J Nucl Med Comm. 1997; 18: 567–573.

    Article  Google Scholar 

  62. Elhendy A, Valkema R, Van Domburg RT, et al. Safety of dobutamine-atropine stress myocardial perfusion scintigraphy. J Nucl Med. 1998; 39: 1662–1666.

    PubMed  CAS  Google Scholar 

  63. Dakik HA, Vempathy H, Verani MS. Tolerance, hemodynamic changes and safety of dobutamine stress perfusion imaging. J Nucl Cardiol. 1996; 3: 410–414.

    Article  PubMed  CAS  Google Scholar 

  64. Pennel DJ, Underwood RS, Ell PJ. Safety of dobutamine stress for thallium-201 myocardial perfusion tomography in patients with asthma. Am J Cardiol. 1993; 71: 1346–1350.

    Article  Google Scholar 

  65. Picano E, Mathias W, Bigi R, Previtali M. Safety and tolerability of dobutamine-atropine stress echocardiography: a prospective, multicenter study. Lancet 1994; 344: 1190–1192.

    Article  PubMed  CAS  Google Scholar 

  66. Elhendy A, Bax JJ, Poldermans D. Dobutamine stress myocardial perfusion imaging in coronary artery disease. J Nucl Med. 2002;43:1634–1646.

    PubMed  Google Scholar 

  67. Elhendy A, van Domburg RT, Bax JJ, et al. Safety, hemodynamic profile, and feasibility of dobutamine stress technetium myocardial perfusion single-photon emission CT imaging for evaluation of coronary artery disease in the elderly. Chest 2000; 117: 649–656.

    Article  PubMed  CAS  Google Scholar 

  68. Elhendy A, van Domburg RT, Vantrimpont P, et al. Impact of heart transplantation on the safety and feasibility of the dobutamine stress test. J Heart Transplant 2001; 20: 399–406.

    Article  CAS  Google Scholar 

  69. Gallik DM, Mahmarian JJ, Verani MS. Therapeutic significance of exercise-induced ST-segment elevation in patients without previous myocardial infarction. Am J Cardiol. 1993; 72: 1–7.

    Article  PubMed  CAS  Google Scholar 

  70. Elhendy A, Geleijnse ML, Roelandt JR, et al. Evaluation by quantitative 99m-technetium MIBI SPECT and echocardiography of myocardial perfusion and wall motion abnormalities in patients with dobutamine-induced ST-segment elevation. Am J Cardiol. 1995; 76: 441–448.

    Article  PubMed  CAS  Google Scholar 

  71. Maiaresse GH, Marwick TH, Vanoverschelde TL, et al. How accurate is dobutamine stress eletrocardiography for detection of coronary artery disease? J Am Coll Cardiol. 1994;24:920–927.

    Article  Google Scholar 

  72. Yun JJ, Wu JC, Heller EN, et al. Dobutamine stress has limited value for enhancing flow heterogeneity in the presence of a moderate stenosis when used in conjunction with Tc-99m sestamibi imaging (abstract). J Am Coll Cardiol. 1995;25(supp A):217A.

    Article  Google Scholar 

  73. Mirta R, Kazuya T, Frank D, et al. Arbutamine stress perfusion imaging in dogs with critical coronary artery stenosis: 99mTc-sestamibi versus 201-Tl. J Nucl Med. 2002; 43: 664–670.

    Google Scholar 

  74. Geleijnse ML, Elhendy A, Domburg RT, et al. Prognostic value of dobutamine-atropine stress technetium-99m sestamibi perfusion scintigraphy in patients with chest pain. J Am Coll Cardiol. 1996; 28: 447–454.

    Article  PubMed  CAS  Google Scholar 

  75. Schinkel AF, Elhendy A, van Domburg RT, et al. Prognostic value of dobutamine-atropine stress 99mTc-tetrafosmin myocardial perfusion SPECT in patients with known or suspected coronary artery disease. J Nucl Med. 2002; 43: 767–772.

    PubMed  Google Scholar 

  76. Narula J, Dawson MS, Singh BK, et al. Noninvasive characterization of stunned, hibernating, remodelled and nonviable myocardium in ischemic cardiomyopathy. J Am Coll Cardiol. 2002; 36: 1913–1919.

    Article  Google Scholar 

  77. Everaert H, Vanhove C, Franken PR. Effects of low-dose dobutamine on left ventricular function in normal subjects as assessed by gated single-photon emission tomography myocardial perfusion studies. Eur J Nucl Med. 1999; 26: 1298–1303.

    Article  PubMed  CAS  Google Scholar 

  78. Leoncini M, Sciagra R, Bellandi F, et al. Low-dose dobutamine nitrate-enhanced technetium 99m sestamibi gated SPECT versus low-dose dobutamine echocardiography for detecting reversible dysfunction in ischemic cardiomyopathy. J Nucl Cardiol. 2002; 9: 402–406.

    Article  PubMed  Google Scholar 

  79. Marwick TH. Arbutamine stress testing with closed loop drug delivery: toward the ideal or just another pharmacologic stress technique? J Am Coll Cardiol. 1995; 26: 1176–1179.

    Article  PubMed  CAS  Google Scholar 

  80. Cohen JL, Chan KL, Jaarsma W, et al. Arbutamine echocardiography: efficacy and safety of a new pharmacologic stress agent to induce myocardial ischemia and detect coronary artery disease. The International Arbutamine Study Group. J Am Coll Cardiol. 1995; 26: 1168–1175.

    Article  PubMed  CAS  Google Scholar 

  81. Anagnostopoulos C, Pennell D, Francis J, et al. A comparison of adenosine and arbutamine for myocardial perfusion imaging. Eur J Nucl Med. 1998; 25: 394–400.

    Article  PubMed  CAS  Google Scholar 

  82. Zoll PM. Resuscitation of the heart in ventricular standstill by external electrical stimulation. JAMA 1952; 247: 768–771.

    CAS  Google Scholar 

  83. Lee CY, Pellikka PA, McCully RB, et al. Nonexercise stress transthoracic echocardiography: transesophageal atrial pacing versus dobutamine stress. J Am Coll Cardiol. 1999;33:506–511.

    Article  PubMed  CAS  Google Scholar 

  84. Atar S, Cercek B, Nagai T, et al. Transthoracic stress echocardiography with transesophageal atrial pacing for bedside evaluation of inducible myocardial ischemia in patients with new-onset chest pain. Am J Cardiol. 2000; 86: 12–16.

    Article  PubMed  CAS  Google Scholar 

  85. Rainbird AJ, Pellikka PA, Stussy VL. et al. A rapid stress-testing protocol for the detection of coronary artery disease. J Am Coll Cardiol. 2000; 36: 1659–1663.

    Article  PubMed  CAS  Google Scholar 

  86. Lambertz H, Kreis A, Trumper H, et al. Simultaneous transesophageal atrial pacing and transesophageal two-dimensional echocardiography: a new method of stress echocardiography. J Am Coll Cardiol. 1990; 16: 1143–1153.

    Article  PubMed  CAS  Google Scholar 

  87. Gimenez VML. Ecocardiografia de Estresse. In Souza AGMR, Mansur A SOCESP Cardiologia,—1a ed. Vol. 2, Cap 20. São Paulo, Brazil: Atheneu;1996:173

    Google Scholar 

  88. Herd JA. Cardiovascular response to stress. Physiological Reviews 1991; 71: 305–330.

    PubMed  CAS  Google Scholar 

  89. Manuck SB, Kaplan JR, Adams MR, Clarkson TB. Effects of stress and the sympathetic nervous system on coronary atherosclerosis in the cynomolgus macaque. Am Heart J. 1988; 116: 328–333.

    Article  PubMed  CAS  Google Scholar 

  90. Hjemdahl P, Fagius J, Freyschuss U, Wallin BG, Daleskog M, Bohlin G, Perski A. Muscle sympathetic activity and norephinephrine release during mental challenge in humans. Am J Physiol 1989; 257: E654–664.

    PubMed  CAS  Google Scholar 

  91. Anderson EA, Sinkey CA, Mark A. Mental stress increases sympathetic nerve activity during sustained baroreceptor stimulation in humans. Hypertension. 1991;17(suppl III): III43–III49.

    PubMed  CAS  Google Scholar 

  92. Linden W. What do arithmetic stress tests measure? Protocol variations and cardiovascular response. Psychophysiology 1991; 28 (1): 91–102.

    Article  PubMed  CAS  Google Scholar 

  93. Cincipirini PM. Cognitive stress and cardiovascular reactivity. I—Relationship to hypertension. Am Heart J. 1986; 112: 1044–1050.

    Article  Google Scholar 

  94. Cinciprini PM. Cognitive stress and cardiovascular reactivity II—Relationship to atherosclerosis, arrhythmias and cognitive control. Am Heart J. 1986; 112: 1051–1065.

    Article  Google Scholar 

  95. Specchia G, Servi E, Falcone C, Gavazzi A, Angoli L, Bramici E, Ardissimo D, Mussini A. Mental arithmetic stress testing in patients with coronary artery disease. Am Heart J. 1984; 108: 56–63.

    Article  PubMed  CAS  Google Scholar 

  96. Grossman P, Watkins LL, Wilhelm FH, Manolakis D, Lown B. Cardiac vagal control and dynamic responses to psychological stress among patients with coronary artery disease. Am J Cardiol. 1996; 78: 1424–1427.

    Article  PubMed  CAS  Google Scholar 

  97. Hines EABG. The cold pressure test for measuring the reactibility of the blood pressure: data concerning 571 normal and hypertensive subjects. Am Heart J. 1936; 11: 1–9.

    Article  Google Scholar 

  98. McIlhany ML, Shaffer JW, Hines EA. The heritability of blood pressure: an investigation of 200 pairs of twins using the cold pressor test. Johns Hopkins Med J. 1975; 136: 57–64.

    PubMed  CAS  Google Scholar 

  99. Stratton JR, Halter JB, Hallstrom AP, Caldwell JH, Ritchie JL. Comparative plasma catecholamine and hemodynamic responses to handgrip, cold pressor and supine bicycle exercise testing in normal subjects. J Am Coll Cardiol. 1983; 2: 93–104.

    Article  PubMed  CAS  Google Scholar 

  100. Backman C, Holm S, Linderholm H. Reaction to cold of patients with coronary insufficiency. Ups J Med Sci 1979; 84: 181–187.

    Article  PubMed  CAS  Google Scholar 

  101. Lassvik C, Areskog NH. Effects of various environmental temperatures on effort angina. Ups J Med Sci 1979; 84: 173–180.

    Article  PubMed  CAS  Google Scholar 

  102. Neill WA, Duncan DA, Kloster F, Mahler DJ. Response of coronary circulation to cutaneous cold. Am J Med. 1974; 56: 471–476.

    Article  PubMed  CAS  Google Scholar 

  103. Epstein SE, Stampfer M, Beiser GD, Goldstein RE, Braunwald E. Effects of a reduction in environmental temperature on the circulatory response to exercise in man. Implications concerning angina pectoris. N Engl J Med. 1969; 280: 7–11.

    Article  PubMed  CAS  Google Scholar 

  104. Mudge GH, Grossman W, Mills RM, Lesch M, Braunwald E. Reflex increase in coronary vascular resistance in patients with ischemic heart disease. N Engl J Med. 1976; 295: 1333–1337.

    Article  PubMed  Google Scholar 

  105. Nabel EG, Ganz P, Gordon JB, Alexander RW, Selwyn AP. Dilation of normal and constriction of atherosclerotic coronary arteries caused by the cold pressor test. Circulation. 1988;77:43–52.

    Article  PubMed  CAS  Google Scholar 

  106. Meeder JG, Peels HO, Blanksma PK, et al. Comparison between positron emission tomography myocardial perfusion imaging and intra-coronary doppler flow velocity measurements at rest and during cold pressor testing in angiographically normal coronary arteries in patients with one-vessel coronary artery disease. Am J Cardiol. 1996; 78: 526–531.

    Article  PubMed  CAS  Google Scholar 

  107. Meeder JG, Blanksma PK, van der Wall EE, et al. Coronary vasomotion in patients with syndrome X: evaluation with positron emission tomography and parametric myocardial perfusion imaging. Eur J Nucl Med. 1997; 24: 530–537.

    PubMed  CAS  Google Scholar 

  108. Vita JA, Treasure CB, Yeung AC, et al. Patients with evidence of coronary endothelial dysfunction as assessed by acetylcholine infusion demonstrate marked increase in sensitivity to constrictor effects of catecholamines. Circulation 1992; 85: 1390–1397.

    PubMed  CAS  Google Scholar 

  109. Zeiher AM, Drexler H, Wollschlager H, Just H. Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 1991; 83: 391–401.

    PubMed  CAS  Google Scholar 

  110. Gould L. Cold pressor test in aortic stenosis and idiopathic hypertrophic subaortic stenosis. Preliminary report. Am J Cardiol. 1969; 23: 38–42.

    Article  PubMed  CAS  Google Scholar 

  111. Wasserman AG, Reiss L, Katz RJ, et al. Insensitivity of the cold pressor stimulation test for the diagnosis of coronary artery disease. Circulation 1983; 67: 1189–1193.

    Article  PubMed  CAS  Google Scholar 

  112. Seneviratne BI, Linton I, Wilkinson R, Rowe W, Spice M. Cold pressor test in diagnosis of coronary artery disease: echophonocardiographic method. BMJ. 1983; 286: 1924–1926.

    Article  PubMed  CAS  Google Scholar 

  113. Ferrara LA, Mancini M, De Simone GD, et al. Responses of serum insulin and blood pressure to cold and handgrip in obese patients. Int J Cardiol. 1991; 32: 353–359.

    Article  PubMed  CAS  Google Scholar 

  114. Verani MS, Zacca NM, DeBauche TL, Miller RR, Chahine RA. Comparison of cold pressor and exercise radionuclide angiocardiography in coronary artery disease. J Nucl Med. 1982; 23: 770–776.

    PubMed  CAS  Google Scholar 

  115. Rootwelt K, Erikssen J, Nitter-Hauge S, Thaulow E. Detection of coronary artery disease with gated cardiac blood-pool scintigraphy: comparison of cold pressor test and dynamic exercise. Clin Physiol 1982; 2: 459–465.

    Article  PubMed  CAS  Google Scholar 

  116. Vojacek J, Hannan WJ, Muir AL. Ventricular response to dynamic exercise and the cold pressor test. Eur Heart J. 1982; 3: 212–222.

    PubMed  CAS  Google Scholar 

  117. Ahmad M, Dubiel JP, Haibach H. Cold pressor thallium-201 myocardial scintigraphy in the diagnosis of coronary artery disease. Am J Cardiol. 1982; 50: 1253–1257.

    Article  PubMed  CAS  Google Scholar 

  118. Hendel RC, Jamil T, Glover DK. Pharmacologic stress testing: new methods and new agents. J Nucl Cardiol. 2003; 10: 197–204.

    Article  PubMed  Google Scholar 

  119. Coronary artery surgery study (CASS): A randomized trial of coronary bypass surgery. Survival data. Circulation 1983; 68: 939–950.

    Google Scholar 

  120. Schneider JF, Thomas HE Jr, Sorlie P, et al. Comparative features of newly acquired left and right bundle branch block in the general population: The Framingham study. Am J Cardiol. 1981; 47: 931–940.

    Article  PubMed  CAS  Google Scholar 

  121. Fahy GJ, Pinski SL, Miller DP, et al. Natural history of isolated bundle branch block. Am J Cardiol. 1996; 77: 1185–1190.

    Article  PubMed  CAS  Google Scholar 

  122. Hirzel HO, Senn M, Nuesch K, et al. Thallium-201 scintigraphy in complete left bundle branch block. Am J Cardiol. 1984; 53: 764–769.

    Article  PubMed  CAS  Google Scholar 

  123. Burns RJ, Galligan L, Wright L, et al. Improved specificity of myocardial thallium 201 single photon emission computed tomography in patients with left bundle branch block by dipyridamole. Am J Cardiol. 1991;68:504–508

    Article  PubMed  CAS  Google Scholar 

  124. Hammermeister KE, DeRouen TA, Dodge HT, et al. Prognostic and predictive value of exertional hypotension in suspected coronary heart disease. Am J Cardiol. 1983; 51: 1261–1266.

    Article  PubMed  CAS  Google Scholar 

  125. Sandvik L, Erikssen J, Ellestad M, et al. Heart rate increase and maximal heart rate during exercise as predictors of cardiovascular mortality: a 16 year follow-up of 1960 healthy men. Coron Artery Dis 1995; 6: 667–679.

    Article  PubMed  CAS  Google Scholar 

  126. Simons M, Parker JA, Udelson JE, Gervino EV. The role of clinical data in interpretation of perfusion images. J Nucl Med. 1994; 35: 740–741.

    PubMed  CAS  Google Scholar 

  127. Mitchell JH, Blomqvist G. Maximal oxygen uptake. N Engl J Med. 1971 6;284(18):1018–1022.

    Google Scholar 

  128. Boz A, Gungor F, Karayalcin B, Yildiz A. The effects of solid food in prevention of intestinal activity in 99mTc tetrofosmin myocardial perfusion scintigraphy. J Nucl Cardiol. 2003; 10: 161–167.

    Article  PubMed  Google Scholar 

  129. Feldman RL, Nichols WM, Pepine CJ, Conti CR. Acute effects of intravenous dipyridamole on regional coronary hemodynamics and metabolism. Circulation 1981; 64: 333–334.

    Article  PubMed  CAS  Google Scholar 

  130. Gould KL, Hamilton GW, Lipscomb K, Ritchie JL, Kennedy W. Method for assessing stress induced regional malperfusion during coronary arteriography. Am J Cardiol. 1974; 34: 557–564.

    Article  PubMed  CAS  Google Scholar 

  131. Klodas E, Miller TD, Christian TF, et al. Prognostic significance of ischemic electrocardiographic changes during vasodilator stress testing in patients with normal SPECT images. J Nucl Cardiol. 2003; 10: 4–8.

    Article  PubMed  Google Scholar 

  132. Abbott BG, Afshar M, Berger AK, Wackers FJ. Prognostic significance of ischemic electrocardiographic changes during adenosine infusion in patients with normal myocardial perfusion imaging. J Nucl Cardiol. 2003; 10: 9–16.

    Article  PubMed  Google Scholar 

  133. Riou LM, Ruiz M, Rieger JM, et al. Influence of propanolol, enalaprilat, verapamil, and caffeine on adenosine A(2A)-receptor-mediated coronary vasodilation. J Am Coll Cardiol. 2002; 40: 1687–1694.

    Article  PubMed  CAS  Google Scholar 

  134. Sharir T, Rabinowitz B, Livschitz S, et al. Underestimation of extent and severity of coronary artery disease by dipyridamole stress thallium-201 single photon emission computed tomographic myocardial perfusion imaging in patients taking antianginal drugs. J Am Coll Cardiol. 1998; 31: 1540–1546.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, LLC

About this chapter

Cite this chapter

Vitola, J.V., Kormann, O.J., Stier, A.L., Chalela, W.A., Mastrocolla, L.E., Delbeke, D. (2004). Stress Modalities to Evaluate Myocardial Perfusion. In: Vitola, J.V., Delbeke, D. (eds) Nuclear Cardiology and Correlative Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2038-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2038-1_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-20707-0

  • Online ISBN: 978-1-4612-2038-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics