Advertisement

Effective Characteristics of Composite Materials and the Optimal Design of Structural Elements

  • K. A. Lurie
  • A. V. Cherkaev
Chapter
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 31)

Abstract

This paper is concerned with structural optimization problems related to a design of inhomogeneous continuous media. Many natural formations, such as the trunk of a tree, a leaf, or bone tissue, have sharply defined internal inhomogeneity leading to the anisotropy of their physical properties varying from one point to another. Since these formations are highly expedient from the point of view of structural mechanics, it would be reasonable to expect that the requirement of optimality for a construction that is artificially designed from a given set of materials would by itself bring into existence the composite media having the best microstructure.

Keywords

Composite Material Laminate Composite Layered Composite Admissible Control Optimal Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. -L. Armand, Application of the theory of optimal control of distributed-parameter systems to structural optimization, Ph.D. Thesis, Department of Aeronautics and Astronautics, Stanford University, 1971Google Scholar
  2. [2]
    N. V. Banichuk, Shape optimization of elastic bodies, (Russian) Nauka Moscow, 1980Google Scholar
  3. [3]
    N. V. Banichuk, V. M. Kartvelishvili, A. A. Mironov, Numerical solution of two-dimensional optimization problems for elastic plates (Russian) Izvestiya Akademii Nauk SSSR, Mekhanika tverdogo tela, 1 1978Google Scholar
  4. [4]
    N. S. Bakhvalov, Averaging of partial differential equations with rapidly oscillating coefficients, (Russian) Doklady Akademii Nauk SSSR 221 3, 1975, 516–519MathSciNetGoogle Scholar
  5. [5]
    V. L. Berdichevskii, Variational principles of continuum mechanics (Russian) Nauka, Moscow, 1983Google Scholar
  6. [6]
    A. S. Bratus’, Asymptotic solutions in problems of optimal control of coefficients in elliptic systems, (Russian) Doklady Akademii Nauk SSSR 259 5, 1981, 1035–1038MathSciNetGoogle Scholar
  7. [7]
    A. S. Bratus’, V. M. Kartvelishvili, Approximate analytic solutions in problems of optimizing the stability and vibrational frequencies of thinwalled elastic structures, Izvestiya Akademii Nauk SSSR, Mekhanika tverdogo tela, 16 6, (Russian) 1981, 119–139MathSciNetGoogle Scholar
  8. [8]
    J. Warga, Optimal control of differential and functional equations, Academic Press, New York, 1972zbMATHGoogle Scholar
  9. [9]
    R. V. Gamkrelidze, Optimal sliding regimes, (Russian) Doklady Akademii Nauk SSSR 143 6, 1962MathSciNetGoogle Scholar
  10. [10]
    L. V. Gibianskii, A. V. Cherkaev, Design of composite plates of extremal rigidity, (Russian) Preprint 914, A.F.Ioffe Physico-Technical Institute, Academy of Sciences of the USSR, Leningrad 1984Google Scholar
  11. [11]
    V. B. Grinev, A. P. Filippov, Optimization of structural elements with respect to mechanical characteristics, (Russian) Naukova Dumka, Kiev, 1975Google Scholar
  12. [12]
    A. M. Dykhne, Conductivity of a two-dimensional system, (Russian) Zhumal Eksperimental’noi i Teoreticheskoi Fiziki 59 7, 1970, 110–116Google Scholar
  13. [13]
    V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Kha Thieng Ngoan, H-omogenization and G-convergence of differential operators, (Russian) Uspekhi Matematicheskikh Nauk 34 5, (209), 1979Google Scholar
  14. [14]
    A. A. Zevin, I. M. Volkova, On the theory of optimal structural design with respect to vibrational frequencies, (Russian) in Fluid mechanics and theory of elasticity, Dnepropetrovskii Universitet, Dnepropetrovsk, 1982Google Scholar
  15. [15]
    R. M. Christensen Mechanics of composite materials, Wiley, New York, 1979Google Scholar
  16. [16]
    N. A. Lavrov, K. A. Lurie, A. V. Cherkaev, Non-homogeneous bar of extremal rigidity in torsion, (Russian) Izvestiya Akademii Nauk SSSR, Mekhanika Tverdogo Tela, 6, 1980Google Scholar
  17. [17]
    J. -L. Lions, Optimal control systems governed by partial differential equations, Springer-Verlag, Berlin, 1971zbMATHCrossRefGoogle Scholar
  18. [18]
    V. G. Litvinov, Optimal control of coefficients in elliptic systems, (Russian) Preprint 79.4 Institute of Mathematics, Academy of Sciences of the Ukrainian SSR, Kiev, 1979Google Scholar
  19. [19]
    A. I. Lurie, Theory of elasticity, (Russian) Nauka, Moscow, 1970Google Scholar
  20. [20]
    K. A. Lurie, On the optimal distribution of the resistivity tensor of the working medium in the channel of a MHD generator, (Russian) Prikladnaya Matematika i Mekhanika 34 2, 1970Google Scholar
  21. [21]
    K. A. Lurie, Optimal control in problems of mathematical physics, (Russian) Nauka, Moscow, 1975; transl. English; transl. Applied optimal control theory of distributed systems, Plenum Press, New York, 1993Google Scholar
  22. [22]
    K. A. Lurie, A. V. Cherkaev, Prager theorem application to optimal design of thin plates, (Russian) Izvestiya Akademii Nauk SSSR, Mekhanika Tverdogo Tela, 6, 1976Google Scholar
  23. [23]
    K. A. Lurie, A. V. Cherkaev, Non-homogeneous bar of extremal torsional rigidity, (Russian) in Nonlinear problems in structural mechanics; Structural optimization, Kiev, 1978, 64–68Google Scholar
  24. [24]
    K. A. Lurie, A. V. Cherkaev, G-closure of a set of anisotropic conductors in the two-dimensional case, (Russian) Doklady Akademii Nauk SSSR 259 2, 1981Google Scholar
  25. [25]
    K. A. Lurie, A. V. Cherkaev, Addition of the editors to the book of N.Olhoff, in Optimal design of constructions (problems of vibration and loss of stability), (Russian) Mir, Moscow, 1981Google Scholar
  26. [26]
    K. A. Lurie, A. V. Cherkaev, Exact estimates of conductivity of mixtures composed of two materials taken in prescribed proportion (plane problem), (Russian) Doklady Akademii Nauk SSSR 264 5, 1982, 1128–1130Google Scholar
  27. [27]
    K. A. Lurie, A. V. Cherkaev, Effective characteristics of composites and problems of optimal design, (Russian) Uspekhi matematicheskikh nauk 39 4 (238), 1984, p. 122Google Scholar
  28. [28]
    K. A. Lurie, A. V. Cherkaev, Exact estimates of conductivity of a binary mixture of isotropic compounds, (Russian) Preprint-894 A.F.Ioffe Physico-Technical Institute, Academy of Sciences of the USSR, Leningrad, 1984Google Scholar
  29. [29]
    K. A. Lurie, A. V. Cherkaev, Optimal design of elastic bodies and the problem of regularization, (Russian) in Dynamics and strength of mechanisms, 40/84 Vyscha shkola, Kharkov, 1984, 25–31Google Scholar
  30. [30]
    E. L. Nikolai, Lagrange’s problem about the most advantageous shape of columns, (Russian) Izvestiya of S.- Petersburg’s Polytechnic Institute, 8, 1907Google Scholar
  31. [31]
    N. Olhoff, Optimal design of constructions (problems of vibration and loss of stability), Mir, Moscow, 1981Google Scholar
  32. [32]
    B. E. Pobedrya, Mechanics of composite materials, (Russian) Moscow State University, Moscow, 1984zbMATHGoogle Scholar
  33. [33]
    U. E. Raitums, Extension of extremal problems connected with linear elliptic equations, (Russian) Doklady Akademii Nauk SSSR 243 2, 1978, 282–283MathSciNetGoogle Scholar
  34. [34]
    U. E. Raitums, On optimal control problems for linear elliptic equations, Doklady Akademii Nauk SSSR 244 4, 1979MathSciNetGoogle Scholar
  35. [35]
    R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970zbMATHGoogle Scholar
  36. [36]
    J. Rychlewski, On Hooke’s law, (Russian) Prikladnaya matematika i mekhanika 48 3, 1984MathSciNetGoogle Scholar
  37. [37]
    E. Sanchez-Palencia, Non-homogeneous media and vibration theory, Springer-Verlag, Berlin, New York, 1980zbMATHGoogle Scholar
  38. [38]
    V. A. Troitskii, L. V. Petukhov, Shape optimization of elastic bodies, (Russian) Nauka, Moscow, 1982Google Scholar
  39. [39]
    A. V. Fedorov, A. V. Cherkaev, Search of an optimal orientation of the axes of elastic symmetry in an orthotropic plate, (Russian) Izvestiya Akademii Nauk SSSR, Mekhanika tverdogo tela 3, 1983, 135–142Google Scholar
  40. [40]
    A. F. Filippov, On certain questions in the theory of optimal control, (Russian) Vestnik Moskovskogo Universiteta, Matematika i Astronomia 2, 1959, 25–32Google Scholar
  41. [41]
    E. J. Haug, J. S. Arora, Applied optimal design: mechanical and structural systems, Wiley, New York, 1979Google Scholar
  42. [42]
    T. D. Ŝermergor, Theory of elasticity of micronon-homogeneous media, (Russian) Nauka, Moscow, 1977Google Scholar
  43. [43]
    I. Ekeland, R. Temam, Convex analysis and variational problems, North-Holland Pub. Co, Amsterdam, 1976zbMATHGoogle Scholar
  44. [44]
    L. S. Young, Lectures on the calculus of variations and optimal control theory, Saunders, Philadelphia, 1969zbMATHGoogle Scholar
  45. [45]
    J. -L. Armand, B. Lodier Optimal design of bending elements, Int. J. Numer. Meth. Eng. 13 2, 1978, 373–384zbMATHCrossRefGoogle Scholar
  46. [46]
    J. -L. Armand, K. A. Lurie, A. V. Cherkaev, Optimal control theory and structural design, in Optimum Structure Design vol. 2, eds., R. H. Gallagher, E. Atrek, K. Ragsdell, O. C. Zienkiewicz, Wiley, 1984Google Scholar
  47. [47]
    J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal. 63 4, 1977, 337–403zbMATHCrossRefGoogle Scholar
  48. [48]
    J. M. Ball, J. C. Currie, P. J. Olver, Null Lagrangians, weak continuity and variational problems of arbitrary order, J. Fund. Anal. 41 1981, 135–174MathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    M. Bendsoe, Optimization of plates, Mathematical Institute, The Technical University of Denmark, 1983Google Scholar
  50. [50]
    D. A. G. Bruggemann, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen, Ann. d. Physik 22 1935, 636–679CrossRefGoogle Scholar
  51. [51]
    J. Cea, K. Malanowski, An example of a max-min problem in partial differential equations, SIAM J. Control 8 2, 1970MathSciNetCrossRefGoogle Scholar
  52. [52]
    A. V. Cherkaev, L. V. Gibianskii, K.A. Lurie, Optimum focusing of heat flux by means of a non-homogeneous heat-conducting medium, The Danish Center for Applied Mathematics and Mechanics, Report No 305, 1985Google Scholar
  53. [53]
    T. Clausen, Über die Formarchitektonischer Säulen Bull. Phys. Math. Acad. St.-Petersburg 9 1851, 279–294Google Scholar
  54. [54]
    B. Dacorogna, Weak continuity and weak lower semicontinuity of nonlinear functionals, Lect. Notes Math. 922, 1982, Springer-Verlag, NYGoogle Scholar
  55. [55]
    R. T. Haftka, B. Prasad, Optimum structural design with plate bending elements — a survey, AIAA J. 19 1981, 517–522zbMATHCrossRefGoogle Scholar
  56. [56]
    Z. Hashin, S. Shtrikman, A variational approach to the theory of the effective magnetic permeability of multiphase materials, J. Appl. Phys. 33, 1962, 3125–3131zbMATHCrossRefGoogle Scholar
  57. [57]
    E. J. Haug, J. Cea, eds., Optimization of distributed parameter structures, in Proc. NATO ASI Meeting 1, 2 Iowa City, 1980; Noordhoff 1981Google Scholar
  58. [58]
    R. Hill, A self-consistent mechanics of composite materials, J. Mech. and Phys. Solids 13 4, 213, 1965CrossRefGoogle Scholar
  59. [59]
    B. Klosowicz, K. A. Lurie, On the optimal non-homogeneity of a torsional elastic bar, Arch. mech. stosow. 24 2, 1971, 239–249MathSciNetGoogle Scholar
  60. [60]
    R. V. Kohn, G. Strang, Structural design optimization, homogenization and relaxation of variational problems, in Macroscopic Properties of Disordered Media, R. Burridge, G. Papanicolaou, S. Childress eds., Lect. Notes Phys., 154, Springer-Verlag, 1982Google Scholar
  61. [61]
    R. V. Kohn, G. Strang, Optimal design for torsional rigidity, in Hybrid and mixed finite element methods, S. N. Alturi, R. H. Gallagher, O. C. Zienkiewicz, eds., Wiley, 1983, 281–288Google Scholar
  62. [62]
    R. V. Kohn, G. Strang, Explicit relaxation of a variational problems in optimal design, Bull. Amer. Math. Soc. 9 1983, 211–214MathSciNetzbMATHCrossRefGoogle Scholar
  63. [63]
    R. V. Kohn, G. Strang, Optimal design and relaxation of variational problems, I, Comm. Pure Appl. Math. 39 1986, 113–137MathSciNetzbMATHCrossRefGoogle Scholar
  64. 63a.
    R. V. Kohn, G. Strang, Optimal design and relaxation of variational problems, II, Comm. Pure Appl. Math. 39 1986, 139–182MathSciNetzbMATHCrossRefGoogle Scholar
  65. 63b.
    R. V. Kohn, G. Strang, Optimal design and relaxation of variational problems, III, Comm. Pure Appl. Math. 39 1986, 353–377MathSciNetzbMATHCrossRefGoogle Scholar
  66. [64]
    R. V. Kohn, M. Vogelius, A new model for thin plates with rapidly varying thickness, Int. J. Solids and Struct. 20 1984, 333–350zbMATHCrossRefGoogle Scholar
  67. [65]
    J. -L. Lions, A. Bensoussan, G. Papanicolaou, Asymptotic analysis for periodic structures, North Holland, 1978zbMATHGoogle Scholar
  68. [66]
    V. G. Litvinov, N. G. Medvedev, Some optimal and inverse problems for orthotropic noncircular cylindrical shells J. Optimiz. Theory and Appl. 42 2, 1984, 229–246MathSciNetzbMATHCrossRefGoogle Scholar
  69. [67]
    K. A. Lurie, A. V. Cherkaev, A. V. Fedorov, Regularization of optimal design problems for bars and plates, I, II, J. Optimiz. Theory and Appl. 37 1982, 499–543MathSciNetzbMATHCrossRefGoogle Scholar
  70. [68]
    K. A. Lurie, A. V. Cherkaev, A. V. Fedorov, On the existence of solutions to some problems of optimal design for bars and plates, J. Optimiz. Theory and Appl. 42 1984, 247–281MathSciNetzbMATHCrossRefGoogle Scholar
  71. [69]
    K. A. Lurie, A. V. Cherkaev, G-closure of a set of anisotropically conducting media in the two-dimensional case, J. Optimiz. Theory and Appl. 42 1984, 283–304MathSciNetzbMATHCrossRefGoogle Scholar
  72. [70]
    K. A. Lurie, A. V. Cherkaev, G-closure of some particular sets of admissible material characteristics for the problem of bending of thin plates, J. Optimiz. Theory and Appl. 42 1984, 305–315MathSciNetzbMATHCrossRefGoogle Scholar
  73. [71]
    A. Marino, S. Spagnolo, Un tipo di approssimazione dell’ operatore \( \sum\limits_{{i,j}} {{D_i}({a_{{i,j}}}(x){D_j})} \)con operatori , ΣjDj(b(x)Dj), Annali Scuola Norm. Sup. Pisa, Sci. Fis. e Mat. 23 1969, 657–673MathSciNetzbMATHGoogle Scholar
  74. [72]
    J. C. Maxwell, A treatise on electricity and magnetism 1, Oxford 1904Google Scholar
  75. [73]
    A. G. Michell, The limits of economy of material in frame structures, Phil. Mag. 6 8, 1904, p. 589Google Scholar
  76. [74]
    C. B. Morrey, Quasiconvexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2 1952, 25–53MathSciNetzbMATHGoogle Scholar
  77. [75]
    F. Murat, Compacité par compensation, Partie I. Ann, Scuola Norm. Sup. Pisa, 5 1978, 489–507; Partie IL, in Proc. Int. meeting on recent methods in non-linear analysis, De Giorgi, Magenes, Mosco, Pitagora, eds., Bologna 1979, 245–256Google Scholar
  78. [76]
    F. Murat, Control in coefficients, in Encyclopedia of systems and control, Pergamon Press, 1983Google Scholar
  79. [77]
    F. Murat, L. Tartar, Calcul des variations et homogenéisation, in Homogenization methods: theory and applications in physics, (Bréau-sans-Nappe, 1983) Collect. Dir. Éudes Rech. Elec. France, 57, Eyrolles, Paris, 1985Google Scholar
  80. [78]
    F. I. Niordson, Optimal design of elastic plates with a constraint on the slope of the thickness function, The Danish Center for Applied Mathematics and Mechanics, Report 225, 1981Google Scholar
  81. [79]
    F. I. Niordson, N. Olhoff, Variational methods in optimization of structures, The Danish Center for Applied Mathematics and Mechanics, Report 161, 1979Google Scholar
  82. [80]
    N. Olhoff, K. -T. Cheng, An investigation concerning optimal design of solid elastic plates, Int. J. Solids and Struct. 17, 1981, 305–321MathSciNetzbMATHCrossRefGoogle Scholar
  83. [81]
    N. Olhoff, K. A. Lurie, A. V. Cherkaev, A. V. Fedorov, Sliding regimes and anisotropy in optimal design of vibrating axisymmetric plates Int. J. Solids and Struct. 17, 1981, 931–948MathSciNetzbMATHCrossRefGoogle Scholar
  84. [82]
    N. Olhoff, J. E. Taylor, On structural optimization, J. Appl. Mech 50 1983, 1139–1151MathSciNetzbMATHCrossRefGoogle Scholar
  85. [83]
    P. J. Olver, Hyperjacobians, determinantal ideals and weak solutions to variational problems, Proc. Roy. Soc. Edinburgh 95A, 1983, 317–340MathSciNetCrossRefGoogle Scholar
  86. [84]
    W. Prager, Introduction to structural optimization Int. Centre for Mechanical Sci., Udine 212 1974, Springer-Verlag, ViennaGoogle Scholar
  87. [85]
    S. H. Rasmussen, Optimering af fiberforstaerkede konstruktioner, The Danish Center for Applied Mathematics and Mechanics, Rapport S12, 1979Google Scholar
  88. [86]
    A. Reuss, Berechnung der Fliebgrenze vin Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle ZAMM. 9 1, 49, 1929zbMATHCrossRefGoogle Scholar
  89. [87]
    G. I. N. Rozvany, Optimal design of flexural systems Pergamon Press, Oxford, 1976Google Scholar
  90. [88]
    G. I. N. Rozvany, N. Olhoff, K. -T. Cheng, J. E. Taylor, On the solids plate paradox in structural optimization, J. Struc. Mech. 10 1982, 1–32MathSciNetCrossRefGoogle Scholar
  91. [89]
    A. Sawczuk, Z. Mróz, eds., Optimization in structural design, in Proc. IUTAM Symp., Warsaw 1973; Springer-Verlag, Berlin, 1975Google Scholar
  92. [90]
    K. Schulgasser, Relationship between single-crystal and polycrystal electrical conductivity, J. Appl. Phys. 47 5, 1976Google Scholar
  93. [91]
    G. Strang, The polyconvexification of F (∇u), Australian Nat. Univ., Research Report CMA-RO9-83, 1983Google Scholar
  94. [92]
    G. Strang, R. V. Kohn, Optimal design in elasticity and plasticity, Int. J. Numer. Meth. Eng. 22 1, 1986, 183–188MathSciNetzbMATHCrossRefGoogle Scholar
  95. [93]
    L. Tartar, Problèmes de contrôle des coefficients dans des équations aux dérivées partielles, Lect. Notes Econ. and Math. Systems 107 1975, Springer-Verlag, 420–426MathSciNetCrossRefGoogle Scholar
  96. [94]
    L. Tartar, Compensated compactness and applications to partial differential equations, in Non-linear Analysis and Mechanics, Heriot- Watt Symp. IV, R. G. Knops, ed., Pitman Press, 1979Google Scholar
  97. [95]
    L. Tartar, Estimations fines de coefficientes homogenéisés in Ennio De Giorgi Colloquium, (Paris, 1983), Res. Notes in Math. 125 1985, Pitman, Boston, 168–187MathSciNetGoogle Scholar
  98. [96]
    W. Voigt, Lehrbuch der Kristallphysik, Teubner, Berlin, 1928zbMATHGoogle Scholar
  99. [97]
    Z. Wasiutynski, A. Brandt, The present state of knowledge in the field of optimum design of structures, Appl. Mech. Revs. 16 5, 1963, 341–350Google Scholar
  100. [98]
    J. M. Ball, F. Murat W 1,p — quasiconvexity and variational problems for multiple integrals, Journ. Fund. Anal. 58 3, 1984, 225–253MathSciNetzbMATHCrossRefGoogle Scholar
  101. [99]
    G. A. Francfort, F. Murat, Homogenization and optimal bounds in linear elasticity, Arch. Rat. Mech. Anal. 94 4, 1986, 307–334MathSciNetzbMATHCrossRefGoogle Scholar
  102. [100]
    J. Goodman, R. V. Kohn, L. Reyna, Numerical study of a relaxed variational problem from optimal design, Comput. Methods Appl. Mech. Engrg. 57, 1, 1986, 107–127MathSciNetzbMATHCrossRefGoogle Scholar
  103. [101]
    R. V. Kohn, G. Milton, On bounding the effective conductivity of anisotropic composites, in Homogenization and effective moduli of materials and media, J. L. Ericksen, D. Kinderlehrer, R. Kohn, J.-L. Lions, eds., Springer-Verlag, NY, 1986, 97–125CrossRefGoogle Scholar
  104. [102]
    K. A. Lurie, A. V. Cherkaev, Exact estimates of conductivity of composites, Proc. Roy. Soc. Edinburgh A99 1984, 1–2, 71–87MathSciNetGoogle Scholar
  105. [103]
    K. A. Lurie, A. V. Cherkaev, Exact estimates of conductivity for a binary mixture of isotropic compounds, Proc. Roy. Soc. Edinburgh A104, 1986, 1–2, 21–38MathSciNetGoogle Scholar
  106. [104]
    K. A. Lurie, A. V. Cherkaev, The problem of formation of an optimal isotropic multicomponent composites, Ioffe Inst. Report 895, A.F.Ioffe Physico-Technical Institute, Academy of Sciences of the USSR, Leningrad, 1984Google Scholar
  107. [105]
    G. W. Milton, Modelling the properties of composites by laminates, in Homogenization moduli of materials and media (Minneapolis, Minn., 1984/1985), IMA Math. Appl. 1, 1986, Springer-Verlag, New York, Berlin, 150–174MathSciNetCrossRefGoogle Scholar
  108. [106]
    F. Murat, Contre-exemples pour divers problèmes on le contrôle intervent dans les coefficients, Annali di Mat. Pura et Appl. 4, 1977, 112–113, 49–68Google Scholar
  109. [107]
    A. N. Norris, A differential scheme for the effective moduli of composites, Mech. Mat. 4 1985, 1–16CrossRefGoogle Scholar
  110. [108]
    J. Sokolowski, Optimal control in coefficients for weak variational problems in Hilbert space, Applied Mathemat. and Optimization 7, 1981, 283–293MathSciNetzbMATHCrossRefGoogle Scholar
  111. [109]
    S. Spagnolo, Convergence in energy of elliptic operators, in In Proc. 3rd Symp. Numer. Solut. Part. Equations, Hutbard, ed., Academic Press, NY, 1976, 469–498Google Scholar
  112. [110]
    G. Strang, R. V. Kohn, The optimal design of two-way conductor, in Topics in nonsmooth mechanics, Birkháuser, Boston, 1988, 143–155 refs.texGoogle Scholar
  113. 1.
    K.A. Lurie, T.Y. Simkina, Load characteristics of a mhd channel in the case of optimal distribution of the resistivity of the working medium, Magnitnaya Gidrodinamika (1972), No. 2, 82–90. (Russian).Google Scholar
  114. 2.
    K.A. Lurie, On the optimal distribution of the resistivity tensor of the working medium in the channel of a mhd generator, Prikladnaya Matematika i Mekhanika, (1970), 34, No. 2. (Russian).Google Scholar
  115. 3.
    K.A. Lurie, Optimal distributions of the resistivity tensor of the working medium in a mhd channel (the case of nonlocal variations), Prikladnaya Matematika i Mekhanika, (1971), 35, No. 2. (Russian).Google Scholar
  116. 4.
    G.G. Cloutier, A.I. Carswell, Plasma quenching by electro-negative gas seeding, Physical Review Letters (1963), 10, No. 8, 327–329.CrossRefGoogle Scholar
  117. 5.
    A.B. Vatazhin, N.G. Nemkova, Some two-dimensional problems of distribution of the electric current within a mhd generator channel with insulating baffles, Prikladnaya Mekhanika i Tekhnicheskaya Fizika (1964), No. 2. (Russian).Google Scholar
  118. 6.
    A.B. Vatazhin, Magnetohydrodynamic flow in a planar channel with finite electrodes, Izvestiya Akademii Nauk SSSR, Otdelenie Tekhnicheskikh Nauk (1962), No. 1. (Russian).Google Scholar
  119. 7.
    K.A. Lurie, Optimal distribution of the magnetic field along the channel of a mhd generator with electrodes of finite length, Zhurnal Tekhnicheskoi Fiziki, (1970), 40, No. 12. (Russian).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • K. A. Lurie
  • A. V. Cherkaev

There are no affiliations available

Personalised recommendations