Advertisement

A Strange Term Coming from Nowhere

  • Doina Cioranescu
  • François Murat
Chapter
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 31)

Abstract

Let Ω be a bounded open set in ℝ N and let us perforate it by holes: we obtain an open set Ωε. Consider the Dirichlet problem in the domain Ωε. The general questions with which we are concerned are the following. Do the solutions u ε converge to a limit u when the parameter e tends to zero? If this limit exists, can it be characterized?

Keywords

Variational Inequality Dirichlet Problem Lower Semicontinuity Regularity Assumption Perforated Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Attouch and C. Picard, Asymptotic analysis of variational problems with constraints of obstacle type, J. Fund. Anal., 15, (1983), 329–386.MathSciNetCrossRefGoogle Scholar
  2. [2]
    L. Carbone and F. Colombini, On convergence of functional with unilateral constraints, J. Math, pures et appl., 59, (1980), 465–500.MathSciNetzbMATHGoogle Scholar
  3. [3]
    D. Cioranescu, Calcul des variations sur des sous-espaces variables, C. R. Acad. Sci. Paris, Série A, 291, (1980), 19–22.MathSciNetzbMATHGoogle Scholar
  4. [4]
    D. Cioranescu, Calcul des variations sur des sous-espaces variables. Applications(*). C. R. Acad. Sci. Paris, Série A, 291, (1980), 87–90.MathSciNetzbMATHGoogle Scholar
  5. [5]
    D. Cioranescu and J. Saint Jean Paulin, Homogenization in open sets with holes, J. Math. Anal. Appl., 71, (1978), 590–607.MathSciNetCrossRefGoogle Scholar
  6. [6]
    D. Cioranescu and J. Saint Jean Paulin, Homogénéisation de problèmes d’évolution dans des ouverts à cavités, C. R. Acad. Sci. Paris, Série A, 286, (1978), 899–902.MathSciNetzbMATHGoogle Scholar
  7. [7]
    R. Courant and D. Hilbert, Methods of mathematical physics, Volume I. Interscience, New York, (1953).Google Scholar
  8. [8]
    G. Dal Maso, Limiti di soluzioni di problemi variazionali con ostacoli bilaterali, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur., 69, (1980), 333–337.MathSciNetzbMATHGoogle Scholar
  9. [9]
    G. Dal Maso, Asymptotic behaviour of minimum problems with bilateral obstacles, Ann. mat. pura ed appl., 129, (1981), 327–366.CrossRefGoogle Scholar
  10. [10]
    G. Dal Maso and P. Longo, Γ-limits of obstacles, Ann. mat. pura ed appl., 128, (1981), 1–50.zbMATHCrossRefGoogle Scholar
  11. [11]
    E. De Giorgi, G. Dal Maso and P. Longo, Γ-limiti di ostacoli, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur., 68, (1980), 481–487.MathSciNetzbMATHGoogle Scholar
  12. [12]
    E. Ja. Hrouslov, The method of orthogonal projections and the Dirichlet problem in domains with fine-grained boundary, Math. USSR Sb., 17, (1972), 37–59.CrossRefGoogle Scholar
  13. [13]
    E. Ja. Hrouslov, The first boundary problem in domains with a complicated boundary for higher order equations, Math. USSR Sb., 32, (1977), 535–549.CrossRefGoogle Scholar
  14. [14]
    E. Ja. Hrouslov, The asymptotic behaviour of solutions of the second boundary value problem under fragmentation of the boundary of the domain, Math. USSR Sb., 35, (1979), 266–282.CrossRefGoogle Scholar
  15. [15]
    V. A. Marcenko and E. Ja. Hrouslov, Boundary value problems in domains with fine-grained boundary (in russian). Naukova Dumka, Kiev, (1974).Google Scholar
  16. [16]
    J. Nečas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris, (1967).zbMATHGoogle Scholar
  17. [17]
    G. C. Papanicolaou and S. R. S. Varadhan, Diffusion in regions with many small holes. In Stochastic differential systems, filtering and control, Proceedings IFIP WG 7/1 Conference, Vilnius, 1978, ed. B. Grigelionis, Lecture Notes in Control and Information Sciences, 25, Springer, Berlin, (1980), 190–206.Google Scholar
  18. [18]
    J. Rauch and M. Taylor, Potential and scattering theory on wildly perturbed domains, J. Funct. Anal., 18, (1975), 27–59.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    J. Rauch and M. Taylor, Electrostatic screening, J. Math. Phys., 16, (1975), 284–288.MathSciNetCrossRefGoogle Scholar
  20. [20]
    J. Saint Jean Paulin, Étude de quelques problèmes de mécanique et d’éléctrotechnique liés aux méthodes d’homogénéisation. Thèse d’Etat, Université Paris VI, (1981).Google Scholar
  21. [21]
    E. Sanchez-Palencia, Boundary value problems in domains containing perforated walls. In Nonlinear partial differential equations and their applications. Collège de France Seminar, Volume III, ed. H. Brezis and J. L. Lions, Research Notes in Mathematics, 70, Pitman, London, (1980), 309–325.Google Scholar
  22. [22]
    L. Tartar, Cours Peccot, Collège de France (1977). Partialy written in F. Murat and L. Tartar, H-convergence, translated in the present volume.Google Scholar
  23. [23]
    L. Tartar, Quelques remarques sur l’homogénéisation. In Functional Analysis and Numerical Analysis, Proceedings of the Japan-France Seminar 1976, ed. H. Fujita, Japan Society for the Promotion of Science, Tokyo, (1978), 469–482.Google Scholar

Additional references

  1. [24]
    G. Allaire, Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes, I and II, Arch. Rat. Mech. Anal., 113, (1991), 209-259 and 261–298.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [25]
    J. Casado-Diaz, Sobre la homogeneización de problemas no coercivos y problemas en dominios con ajujeros. Ph. D. Thesis, University of Seville, 1993.Google Scholar
  3. [26]
    J. Casado-Diaz, Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with general monotone operators, Proc. Roy. Soc. Edinburgh, to appear.Google Scholar
  4. [27]
    J. Casado-Diaz and A. Garroni, The limit of Dirichlet problems in perforated domains with general pseudo-monotone operators, to appear.Google Scholar
  5. [28]
    D. Cioranescu, P. Donato, F. Murat and E. Zuazua, Homogenization and corrector for the wave equation in domains with small holes, Ann. Sc. Norm. Sup. Pisa, 18, (1991), 251–293.MathSciNetzbMATHGoogle Scholar
  6. [29]
    G. Dal Maso, An Introduction to Γ-Convergence. Birkhäuser, Boston, (1993).CrossRefGoogle Scholar
  7. [30]
    G. Dal Maso and A. Garroni, New results on the asymptotic behaviour of Dirichlet problems in perforated domains, Math. Mod. Meth. Appl. Sci., 4 (1994), no. 3, 373–407.zbMATHCrossRefGoogle Scholar
  8. [31]
    G. Dal Maso and F. Murat, Dirichlet problems in perforated domains for homogeneous monotone operators on Hq. In Calculus of variations, homogenization and continuum mechanics, (Marseilles-Luminy, 1993), World Scientific.Google Scholar
  9. [32]
    G. Dal Maso and F. Murat, Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators. To appear in Annali della Scuola Normale Superiore di Pisa, 1997.Google Scholar
  10. [34]
    H. Kacimi and F. Murat, Estimation de l’erreur dans des problèmes de Dirichlet où apparaît un terme étrange. In Partial Differential Equations and the Calculus of Variations: Essays in Honor of Ennio De Giorgi, Volume II, F. Colombini, A. Marino, L. Modica and S. Spagnolo, eds., Progress in Nonlinear Differential Equations and their Applications, 2, Birkhäuser, Boston, (1989), 661–696.Google Scholar
  11. [35]
    I.V. Skrypnik, Nonlinear elliptic boundary value problems. Teubner-Verlag, Leipzig, (1986).zbMATHGoogle Scholar
  12. [36]
    I.V. Skrypnik, Methods of investigation of nonlinear elliptic boundary value problems, Nauka, Moscow, (1990), (in russian).Google Scholar
  13. [37]
    I.V. Skrypnik, Averaging nonlinear Dirichlet problems in domains with channels, Soviet Math. Dokl., 42, (1991), 853–857.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Doina Cioranescu
  • François Murat

There are no affiliations available

Personalised recommendations