Advertisement

Estimations of Homogenized Coefficients

  • Luc Tartar
Chapter
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 31)

Abstract

The homogenization method gives the possibility of finding equations satisfied by macroscopic quantities from equations satisfied by the physical quantities and from information on the microscopic composition (or on the microscopic structure).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Spagnolo, Convergence in energy for elliptic operators, in: Numerical Solutions of Partial Differential Equations III, B. Hubbard, ed., Academic Press (1976), 469–498.Google Scholar
  2. [2]
    L. Tartar, Quelques remarques sur l’homogénéisation, in Functional Analysis and Numerical Analysis, Procceedings of the Japan-France Seminar 1976, H. Fujita, ed., Japan Society for the Promotion of Science, (1978), 469–482.Google Scholar
  3. [3]
    F. Murat, Thèse, Université Pierre et Marie Curie, Paris (1977).Google Scholar
  4. [4]
    L. Tartar, Cours Peccot. Collège de France, Paris (1977).Google Scholar
  5. [5]
    F. Murat, Compacité par compensation, Ann. Scu. Norm. Sup. Pisa 5 (1978), 489–507.MathSciNetzbMATHGoogle Scholar
  6. [6]
    L. Tartar, Une nouvelle méthode de résolution d’équations aux dérivées partielles non linéaires, in: Journées d’Analyse non linéaire. Lecture Notes in Mathematics, (665), Springer Verlag (1978), 228–241.CrossRefGoogle Scholar
  7. [7]
    I. Babuška, Homogenization and its applications, in: Numerical Solutions of Partial Differential Equations III, B. Hubbard, ed., Academic Press (1976), 89–116.Google Scholar
  8. [8]
    A. Bensoussan, J. L. Lions, and G. Papanicolaou, Asymptotic Methods in Periodic Structures, North Holland, Amsterdam (1978).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Luc Tartar

There are no affiliations available

Personalised recommendations