On the Control of Coefficients in Partial Differential Equations

  • François Murat
  • Luc Tartar
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 31)


I. A few problems of the search for an optimal domain can be formulated as follows. Let Ω be an open bounded set of <inline>1</inline> (N = 2 or 3 in general).


Dirichlet Problem Dielectric Permittivity Polarization Field Limit Problem Optimal Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Chenais, Un résultat d’existence dans un problème d’identification de domaine, C. R. Acad. Sci. Paris Série A, 276 (1973), 547–550.MathSciNetzbMATHGoogle Scholar
  2. [1a]
    D. Chenais, On the existence of a solution in a domain identification problem, J. Math. Anal. Appl. 52 (1975), 189–219.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [2]
    F. Murat, Un contre-exemple pour le problème du contrôle dans les coefficients, C. R. Acad. Sci. Paris Série A, 273 (1971), 708–711.MathSciNetzbMATHGoogle Scholar
  4. [2a]
    F. Murat, Théorèmes de non-existence pour des problèmes de contrôle dans les coefficients, C. R. Acad. Sci. Paris Série A, 274 (1972), 395–398.MathSciNetzbMATHGoogle Scholar
  5. [2b]
    F. Murat, Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients, Ann. Mat. Pura Appl. 12 (1977), 49–68.MathSciNetCrossRefGoogle Scholar
  6. [3]
    S. Spagnolo, Sul limite delle soluzioni di problemi de Cauchy relativi all’equazione del calore, Ann. Sc. Norm. Sup. Pisa 21 (1967), 657–699.MathSciNetzbMATHGoogle Scholar
  7. [3a]
    S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellitiche, Ann. Sc. Norm. Sup. Pisa 22 (1968), 571–597.zbMATHGoogle Scholar
  8. [3b]
    A. Marino and S. Spagnolo, Un tipo di approssimazione dell’operatore \( \sum {\;{D_i}({a_{{ij}}}{D_j})} \) con operatori \( \sum {\;{D_i}{{(\beta {D_i})}_x}} \), Ann. Sc. Norm. Sup. Pisa 23 (1969), 657–673.MathSciNetzbMATHGoogle Scholar
  9. [3c]
    E. De Giorgi and S. Spagnolo, Sulla convergenza degli integrali dell’energia per operatori ellitici del secondo ordine, Boll. Unione Mat. Ital. 8 (1973), 391–411.zbMATHGoogle Scholar
  10. [4]
    F. Murat and L. Tartar, to appear.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • François Murat
  • Luc Tartar

There are no affiliations available

Personalised recommendations