Optimal Transformations for Prediction in Continuous-Time Stochastic Processes

  • B. Gidas
  • A. Murua
Part of the Trends in Mathematics book series (TM)


In the classical Wiener-Kolmogorov prediction problem, one fixes a functional of the “future” and seeks its best predictor (in the L 2-sense). In this paper we treat a variant of this problem, whereby we seek the “most predictable” non-trivial functional of the future and its best predictor. In contrast to the Wiener-Kolmogorov problem, our problem may not have solutions, and if solutions exist, they might not be unique. We prove the existence of solutions for linear functionals under appropriate conditions on the spectral function of weakly stationary, continuous-time processes.


Spectral Function Hardy Space Toeplitz Operator Inverse Fourier Transform Trace Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Böottcher and B. Silbermann. Analysis of Toeplitz Operators. Springer-Verlag, 1990.Google Scholar
  2. [2]
    L. Breiman and J. H. Friedman. Estimating optimal transformations for multiple regression and correlation (with discussion). Journal of the American Statistical Association, 80:580–619, 1985.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    L. Breiman and R. Ihaka. Nonlinear discriminant analysis via scaling and ACE. Technical report, University of California, Berkeley, Dept. of Statistics, 1988.Google Scholar
  4. [4]
    H. Dym and H. P. McKean. Gaussian Processes, Function Theory, and the Inverse Spectral Theorem. Academic Press, Inc., New York, 1976.Google Scholar
  5. [5]
    J. Garnett. Bounded Analytic Functions. Academic Press, New York, 1981.zbMATHGoogle Scholar
  6. [6]
    B. Gidas and A. Murua. Estimation and consistency for Linear functional of continuous-time processes from a finite data set, II: Optimal transformations for prediction. Preprint.Google Scholar
  7. [7]
    B. Gidas and A. Murua. Optimal transformations for prediction in continuous-time stochastic processes with rational spectral densities. In preparation.Google Scholar
  8. [8]
    B. Gidas and A. Murua. Classification and clustering of stop consonants via nonparametric transformations and wavelets. In ICASSP-95, volume 1, pages 872–875, 1995.CrossRefGoogle Scholar
  9. [9]
    B. Gidas and A. Murua. Stop consonants discrimination and clustering using nonlinear transformations and wavelets. In S. E. Levinson and L. Shepp, editors, Image Models (And Their Speech Model Cousins), volume 80 of IMA, pages 13–62. Springer-Verlag, 1996.Google Scholar
  10. [10]
    H. Helson and G. Szego. A problem in prediction theory. Ann. Mat. Pura Appl, 51:107–138, 1960.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    I. A. Ibragimov and Y. A. Rozanov. Gaussian Random Processes. Springer-Verlag, New York, 1978.zbMATHCrossRefGoogle Scholar
  12. [12]
    P. Koosis. Introduction to Hp Spaces. Cambridge University Press, 1980.Google Scholar
  13. [13]
    P. Koosis. The Logarithmic Integral, volume 2. Cambridge University Press, 1988.Google Scholar
  14. [14]
    N. Levinson and H. P. McKean. Weighted trigonometrical approximation on the line with application to the germ field of a stationary gaussian noise. Acta. Math., 112:99–143, 1964.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    W. Magnus and F. Oberthettinger. Formulas and Theorems for the Special Functions of Mathematical Physics. Springer-Verlag, 1966.Google Scholar
  16. [16]
    J. R. Partington. An Introduction to Hankel Operators. Cambridge University Press, 1988.Google Scholar
  17. [17]
    M. Reed and B. Simon. Methods of Modern Mathematical Physics, volume 1. Academic Press, New York, 1972.zbMATHGoogle Scholar
  18. [18]
    Y. A. Rozanov. Stationary Random Processes. Holden-Day, San Francisco, 1967.zbMATHGoogle Scholar
  19. [19]
    D. Sarason. Function theory on the unit disc. Virginia Polytechnique Institute and State University, Blacksburg, Virginia, 1978.Google Scholar
  20. [20]
    B. Simon. The P(ϕ)2 Euclidean (Quantum) Field Theory. Princeton University Press, Princeton, New Jersey, 197Google Scholar
  21. [21]
    B. Simon. Functional Integration and Quantum Physics. Academic Press, New York, 1979.zbMATHGoogle Scholar
  22. [22]
    J. Weidman. Linear Operators in Hilbert Spaces. Springer-Verlag, New York, 1980.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • B. Gidas
    • 1
  • A. Murua
    • 2
  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA
  2. 2.Department of StatisticsThe University of ChicagoChicagoUSA

Personalised recommendations