Advertisement

Norming Operators for Operator-Self-Similar Processes

  • Makoto Maejima
Part of the Trends in Mathematics book series (TM)

Abstract

There are many similarities between the theory of operator-stable distributions and that of operator-self-similar processes as discussed by Mason [6].

Keywords

Linear Operator Norming Operator Compact Subset Symmetry Group Limit Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Billingsley, Convergence of types in k-spaces, Z. Wahrsch. verw. Gebiete 5 (1966), 175–179.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    J.P. Holmes, W.N. Hudson and J.D. Mason, Operator-stable laws: Multiple exponents and elliptical symmetry, Ann. Probab. 10 (1982), 602–612.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    W.N. Hudson, Z.J. Jurek and J.A. Veeh, The symmetry group and exponents of operator stable probability measures, Ann. Probab.} 14 (1986), 1014–1023.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    W.N. Hudson and J.D. Mason, Operator-self-similar processes in a finite-dimensional space, Trans. Amer. Math. Soc. 273 (1982), 281–297.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    R.G. Laha and V.K. Rohatgi, Operator self-similar stochastic processes in R d, Stoch. Proc. Appl. 12} (1982}), 73–84MathSciNetCrossRefGoogle Scholar
  6. [6]
    J.D. Mason, A comparison of the properties of operator-stable distributions and operator-self-similar processes, Colloquia Mathematicia Societaris Janos Bolya 36 (1982), 751–760.Google Scholar
  7. [7]
    M.M. Meerschaert, Regular variation in R k, Proc. Amer. Math. Soc. 102 (1988), 341–348.MathSciNetzbMATHGoogle Scholar
  8. [8]
    M.M. Meerschaert, Norming operators for generalized domain of attraction, J. Theoret. Proab. 7 (1994), 793–798.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    J. Michaliček, Der Anziehungsbereich von operator-stabilen Verteilungen im R 2}, Z. Wahrsch. verw. Gebiete 25 (1972), 57–70.zbMATHCrossRefGoogle Scholar
  10. [10]
    K. Sato, Self-similar processes with independent increments, Probab. Th. Rel. Fields 89 (1991), 285–300.zbMATHCrossRefGoogle Scholar
  11. [11]
    M. Sharpe, Operator-stable probability distributions on vector groups, Trans. Amer. Math. Soc. 136 (1969), 51–65.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Makoto Maejima
    • 1
  1. 1.Department of MathematicsKeio UniversityYokohamaJapan

Personalised recommendations