The Burgers Equation with a Non-Gaussian Random Force

  • Fred Espen Benth
  • Ludwig Streit
Conference paper
Part of the Progress in Probability book series (PRPR, volume 42)

Abstract

In recent years there has been a growing interest in Burgers equation with a randomly disturbed external force. Yakhot and She [YS], Orlowski and Sobczyk [OS], Bertini et. al. [BCJ-L] and Dermoune [D2] have studied the Burgers equation driven additively by a noisy force. An analysis of a singular Gaussian noise as an additive force has been presented by Holden et. al. [HLØUZI+2]. On the other hand, Konno [K], de Lillo [L] and Benth et. al. [BDPS] have studied Burgers equation with a multiplicative noise.

Keywords

Soliton Convolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ADKS]
    S. Albeverio, Yu. L. Daletsky, Yu. G. Kondratiev and L. Streit: Non-Gaussian Infinite Dimensional Analysis. Preprint, University of Bielefeld, Germany. 1994.Google Scholar
  2. [BCJ-L]
    L. Bertini, N. Cancrini and G. Jona-Lasinio: The Stochastic Burgers Equation. Preprint. University of Rome, Italy. 1994.Google Scholar
  3. [BDPS]
    F. E. Benth, Th. Deck, J. Potthoff and L Streit: Nonlinear Evolution Equations with Gradient Coupled Noise. Preprint, University of Mannheim, Germany. 1995.Google Scholar
  4. [D1]
    A. Dermoune: The Burgers Equation with Gaussian or Poissonian White Noise. Preprint, Universités du Maine et D’Angers, France. 1995.Google Scholar
  5. [D2]
    A. Dermoune: Around the Stochastic Burgers Equation. Preprint, Universités du Maine et D’Angers, France. 1995.Google Scholar
  6. [D3]
    A. Dermoune: Non-Commutative Burgers Equation. Preprint, Universités du Maine et D’Angers, France. 1995.Google Scholar
  7. [Fr]
    A. Friedman: Partial Differential Equations of Parabolic Type. Krieger 1982.Google Scholar
  8. [HKPS]
    T. Hida, H.-H. Kuo, J. Potthoff and L. Streit: White Noise Analysis. — An Infinite Dimensional Calculus. Kluwer Academic Publishers, 1993.Google Scholar
  9. [HLØUZ 1]
    H. Holden, T. Lindstrøm, B. Øksendal, J. Ubøe and T.-S. Zhang: The Burgers Equation with a Noisy Force and the Stochastic Heat Equation. Comm PDE 19, 1994.Google Scholar
  10. [HLØUZ 2]
    H. Holden, T. Lindstrøm, B. Øksendal, J. Ubøe and T.-S. Zhang: The Stochastic Wick-Type Burgers Equation. Manuscript 1994.Google Scholar
  11. [K]
    H. Konno: On Stochastic Burgers Equation. J. Phys. Soc. of Japan, Vol. 54, 12, 1985.MathSciNetCrossRefGoogle Scholar
  12. [KLPSW]
    Yu. G. Kondratiev, P. Leukert, J. Potthoff, L. Streit and W. Westerkamp: Generalized Functionals in Gaussian Spaces — the Characterization Theorem Revisited. Preprint, University of Mannheim, Germany. 1994.Google Scholar
  13. [KLS]
    Yu. G. Kondratiev, P. Leukert and L. Streit: Wick Calculus in Gaussian Analysis. Preprint, University of Bielefeld, Germany. 1994.Google Scholar
  14. [KSW]
    Yu. G. Kondratiev, L. Streit and W. Westerkamp: Generalized Functions in Infinite Dimensional Analysis. In preparation.Google Scholar
  15. [L]
    S. de Lillo: The Burgers Equation under Multiplicative Noise. Physics Letters A, 188, 1994.Google Scholar
  16. [OS]
    A. Orlowski and K. Sobczyk: Solitons and Shock Waves under Random External Noise. Rep. on Math. Physics, 27, 1989.Google Scholar
  17. [P]
    J. Potthoff: White Noise Approach to Parabolic Stochastic Partial Differential Equations. In: A. I. Cardoso et. al. (eds.): Stochastic Analysis and Applications in Physics. NATO-ASI series Vol. C449, Kluwer Academic Publishers. 1994.Google Scholar
  18. [Pr1]
    N. Privault: Calcul Chaotique et Variationnel pour le Processus de Poisson. Ph. D. thesis, University of Paris, France. 1994.Google Scholar
  19. [Pr2]
    N. Privault: Chaotic and Variational Calculus in Discrete and Continuous Time for the Poisson Process. Stochastics and Stochastics Reports 51, 1994.Google Scholar
  20. [PS]
    J. Potthoff and L. Streit: A Characterization of Hida Distributions. J. Funct. Anal. 101, 1991.Google Scholar
  21. [U]
    G. F. Us: Dual Appell Systems in Poissonian Analysis. Preprint. University of Kiew, Ukraine. 1994.Google Scholar
  22. [YS]
    V. Yakhot and Z. -S. She: Long-Time, Large-Scale Properties of the Random-Force-Driven Burgers Equation. Phys. Rev. Letters, Vol. 60, 18, 1988.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Fred Espen Benth
  • Ludwig Streit

There are no affiliations available

Personalised recommendations