Skip to main content

Mechanical Systems with Symmetry, Variational Principles, and Integration Algorithms

  • Conference paper

Abstract

This paper studies variational principles for mechanical systems with symmetry and their applications to integration algorithms. We recall some general features of how to reduce variational principles in the presence of a symmetry group along with general features of integration algorithms for mechanical systems. Then we describe some integration algorithms based directly on variational principles using a discretization technique of Veselov.

The general idea for these variational integrators is to directly discretize Hamilton’s principle rather than the equations of motion in a way that preserves the original systems invariants, notably the symplectic form and, via a discrete version of Noether’s theorem, the momentum map. The resulting mechanical integrators are second-order accurate, implicit, symplectic-momentum algorithms. We apply these integrators to the rigid body and the double spherical pendulum to show that the techniques are competitive with existing integrators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, R. and J.E. Marsden [1978] Foundations of Mechanics. Second Edition, Addison-Wesley.

    Google Scholar 

  • Abraham, R., J.E. Marsden, and T.S. Ratiu [1988] Manifolds, Tensor Analysis, and Applications. Second Edition, Applied Mathematical Sciences 75, Springer-Verlag.

    Google Scholar 

  • Anderson, H. [1983]. Rattle: A velocity version of the shake algorithm for molecular dynamics calculations. J. Comp. Phys., 52, 24–34.

    Article  Google Scholar 

  • Armero, F. and J.C. Simo [1996] Long-Term Dissipativity of Time-Stepping Algorithms for an Abstract Evolution Equation with Applications to the Incompressible MHD and Navier-Stokes Equations. Comp. Meth. Appl. Mech. Eng. 131, 41–90.

    Article  MathSciNet  MATH  Google Scholar 

  • Arnold, V.I. [1989] Mathematical Methods of Classical Mechanics. Second Edition, Graduate Texts in Mathematics 60, Springer-Verlag.

    Google Scholar 

  • Austin, M. and P.S. Krishnaprasad [1993] Almost Poisson Integration of Rigid Body Systems, J. Comp. Phys. 106

    Google Scholar 

  • Baez, J. C. and J. W. Gilliam [1995]. An algebraic approach to discrete mechanics. Preprint, http://math.ucr.edu/home/baez/ca.tex.

    Google Scholar 

  • Barth, E. and B. Leimkuhler [1996a]. A semi-explicit, variable-stepsize integrator for constrained dynamics. Mathematics department preprint series, University of Kansas.

    Google Scholar 

  • Barth, E. and B. Leimkuhler [1996b]. Symplectic methods for conservative multibody systems. Fields Institute Communications, 10, 25–43.

    MathSciNet  Google Scholar 

  • Bloch, A.M., P.S. Krishnaprasad, J.E. Marsden, and T.S. Ratiu [1994] Dissipation Induced Instabilities, Ann. Inst. H. Poincaré, Analyse Nonlineare 11, 37–90.

    MathSciNet  MATH  Google Scholar 

  • Bloch, A.M., P.S. Krishnaprasad, J.E. Marsden, and T.S. Ratiu [1996] The Euler-Poincaré equations and double bracket dissipation. Comm. Math. Phys. 175, 1–42.

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch, A.M., P.S. Krishnaprasad, J.E. Maxsden, and R. Murray [1996] Nonholonomic mechanical systems with symmetry. Arch. Rat. Mech. An. (to appear).

    Google Scholar 

  • Bretherton, F.P. [1970] A note on Hamilton’s principle for perfect fluids. J. Fluid Mech. 44, 19–31.

    Article  MATH  Google Scholar 

  • Channell, P. and C. Scovel [1990] Symplectic integration of Hamiltonian systems, Nonlinearity 3, 231–259.

    Article  MathSciNet  MATH  Google Scholar 

  • Chorin, A.J, T.J.R. Hughes, J.E. Marsden, and M. McCracken [1978] Product Formulas and Numerical Algorithms, Comm. Pure Appl. Math. 31, 205–256.

    Article  MathSciNet  MATH  Google Scholar 

  • Feng, K. [1986] Difference schemes for Hamiltonian formalism and symplectic geometry. J. Comp. Math. 4, 279–289.

    MATH  Google Scholar 

  • Feng, K. and Z. Ge [1988] On approximations of Hamiltonian systems, J. Comp. Math. 6, 88–97.

    MathSciNet  MATH  Google Scholar 

  • Feng, K. and M.Z. Qin [1987] The symplectic methods for the computation of Hamiltonian equations, Springer Lecture Notes in Math. 1297, 1–37.

    Article  MathSciNet  Google Scholar 

  • Ge, Z. [1990] Generating functions, Hamilton-Jacobi equation and sym-plectic groupoids over Poisson manifolds, Indiana Univ. Math. J. 39, 859–876.

    Article  MathSciNet  MATH  Google Scholar 

  • Ge, Z. [1991a] Equivariant symplectic difference schemes and generating functions, Physica D 49, 376–386.

    Article  MathSciNet  MATH  Google Scholar 

  • Ge, Z. [1991b] A constrained variational problem and the space of horizontal paths, Pacific J. Math. 149, 61–94.

    MathSciNet  MATH  Google Scholar 

  • Ge, Z. [1994] Generating functions, Hamilton-Jacobi equations and symplectic groupoids on poisson manifolds. Indiana U. Math. J. 39, 850–875.

    Google Scholar 

  • Ge, Z. and J.E. Marsden [1988] Lie-Poisson integrators and Lie-Poisson Hamilton-Jacobi theory, Phys. Lett. A 133, 134–139.

    Article  MathSciNet  Google Scholar 

  • Gillilan, R. and K. Wilson [1992]. Shadowing, rare events, and rubber bands: A variational Verlet algorithm for molecular dynamics. J. Chem. Phys., 97, 1757–1772.

    Article  Google Scholar 

  • Gonzalez, O. [1996a] Design and Analysis of Conserving Integrators for Nonlinear Hamiltonian Systems with Symmetry, Thesis, Stanford University, Mechanical Engineering.

    Google Scholar 

  • Gonzalez, O. [1996b]. Time integration and discrete Hamiltonian systems. Journal of Nonlinear Science, to appear.

    Google Scholar 

  • Itoh, T. and K. Abe [1988]. Hamiltonian-conserving discrete canonical equations based on variational difference quotients. Journal of Computational Physics, 77, 85–102.

    Article  MathSciNet  Google Scholar 

  • Jay, L. [1996]. Symplectic partitioned runge-kutta methods for constrained Hamiltonian systems. SIAM Journal on Numerical Analysis, 33, 368–387.

    Article  MathSciNet  MATH  Google Scholar 

  • Koon, W.S. and J.E. Marsden [1996] Optimal control for holonomic and nonholonomic mechanical systems with symmetry and Lagrangian reduction. SIAM J. Control and Optim (to appear).

    Google Scholar 

  • Labudde, R. A. and D. Greenspan [1974]. Discrete mechanics-a general treatment. Journal of Computational Physics, 15, 134–167.

    Article  MathSciNet  MATH  Google Scholar 

  • Labudde, R. A. and D. Greenspan [1976a]. Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion-I. Motion of a single particle. Numer. Math., 25, 323–346.

    Article  MathSciNet  MATH  Google Scholar 

  • Labudde, R. A. and D. Greenspan [1976b]. Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion-II. Motion of a system of particles. Numer. Math., 26, 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  • Leimkuhler, B. and G. Patrick [1996]. Symplectic integration on Rieman-nian manifolds. J. of Nonl. Sci. 6, 367–384.

    Article  MathSciNet  MATH  Google Scholar 

  • Leimkuhler, B. and R. Skeel [1994]. Symplectic numerical integrators in constrained Hamiltonian systems. Journal of Computational Physics, 112, 117–125.

    Article  MathSciNet  MATH  Google Scholar 

  • Leonard, N.E. [1995a] Control synthesis and adaptation for an underactuated autonomous underwater vehicle, IEEE J. of Oceanic Eng. 20, 211–220.

    Article  Google Scholar 

  • Leonard, N.E. [1995b] Stability of a bottom-heavy underwater vehicle, Mechanical and Aerospace Engineering, Princeton University Technical Report 2048, to appear in Automatica 33, March 1997.

    Google Scholar 

  • Leonard, N.E. and J.E. Marsden [1996] Stability and Drift at Non-generic Momenta and Underwater Vehicle Dynamics, Mechanical and Aerospace Engineering, Princeton University Technical Report 2075,

    Google Scholar 

  • Lewis, D. and J.C. Simo [1995] Conserving algorithms for the dynamics of Hamiltonian systems on Lie groups. J. Nonlinear Sci. 4, 253–299.

    Article  MathSciNet  Google Scholar 

  • Lewis, H. and Kostelec, P. [1996]. The use of Hamilton’s principle to derive time-advance algorithms for ordinary differential equations. Comp. Phys. Commun. 96, 129–151.

    Article  MathSciNet  MATH  Google Scholar 

  • MacKay, R. [1992]. Some aspects of the dynamics of Hamiltonian systems. In Broomhead, D. S. and Iserles, A., eds, The Dynamics of numerics and the numerics of dynamics, 137–193. Clarendon Press, Oxford.

    Google Scholar 

  • Maeda, S. (1981). Lagrangian formulation of discrete systems and concept of difference space. Math. Japonica, 27, 345–356.

    Google Scholar 

  • Marsden, J.E. [1992], Lectures on Mechanics London Mathematical Society Lecture note series, 174, Cambridge University Press.

    Google Scholar 

  • Marsden, J. E., G. W. Patrick, and W. F. Shadwick [1996] Integration Algorithms and Classical Mechanics. Fields Inst. Commun., 10, Am. Math. Society.

    Google Scholar 

  • Marsden, J.E. and T.S. Ratiu [1994] Symmetry and Mechanics. Texts in Applied Mathematics, 17, Springer-Verlag.

    Google Scholar 

  • Marsden, J.E. and J. Scheurle [1993a] Lagrangian reduction and the double spherical pendulum, ZAMP 44, 17–43.

    Article  MathSciNet  MATH  Google Scholar 

  • Marsden, J.E. and J. Scheurle [1993b] The reduced Euler-Lagrange equations, Fields Inst Comm. 1, 139–164.

    MathSciNet  Google Scholar 

  • Marsden, J.E. and J. Scheurle [1995] Pattern evocation and geometric phases in mechanical systems with symmetry, Dyn. and Stab, of Systems. 10, 315–338.

    Article  MathSciNet  MATH  Google Scholar 

  • Marsden, J.E., J. Scheurle and J. Wendlandt [1996] Visualization of orbits and pattern evocation for the double spherical pendulum, ICIAM 95: Mathematical Research, Academie Verlag, Ed. by K. Kirchgässner, O. Mahrenholtz and R. Mennicken 87, 213–232.

    MathSciNet  Google Scholar 

  • McLaughlin, R.I. and C. Scovel [1995] Equivariant constrained symplectic integration. J. of Nonl. Sci. 5, 233–256.

    Article  Google Scholar 

  • McLachlan, R. I. and C. Scovel [1996]. A survey of open problems in symplectic integration. Fields Inst. Comm., 10, 151–180.

    MathSciNet  Google Scholar 

  • Montgomery, R., J.E. Marsden, and T.S. Ratiu [1984] Gauged Lie-Poisson structures, Cont Math. AMS 28, 101–114.

    Article  MathSciNet  Google Scholar 

  • Moser, J. and A.P. Veselov [1991] Discrete versions of some classical integrable systems and factorization of matrix polynomials. Comm. Math. Phys. 139, 217–243.

    Article  MathSciNet  MATH  Google Scholar 

  • Murray, R., Z. Li, and S. Sastry [1994]. A Mathematical Introduction to Robotic Manipulation, CRC Press, Boca Raton, Fl.

    Google Scholar 

  • Ortiz, M. (1986). A note on energy conservation and stability of nonlinear time-stepping algorithms. Computers and Structures, 24, 167–168.

    Article  Google Scholar 

  • Reich, S. [1993]. Symplectic integration of constrained Hamiltonian systems by Runge-Kutta methods. Technical Report 93-13, University of British Columbia.

    Google Scholar 

  • Reich, S. [1994] Symplectic integrators for systmes of rigid bodies, (preprint, Inst. Angw. Anal. Stch. )

    Google Scholar 

  • Reich, S. (1994). Momentum preserving symplectic integrators. Physica D, 76 (4): 375–383.

    Article  MathSciNet  MATH  Google Scholar 

  • Ryckaert, J., G. Ciccotti, and H. Berendsen [1977]. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. of Comp. Phys., 23, 327–341.

    Article  Google Scholar 

  • Sanz-Serna, J. M. [1988] Runge-Kutta schemes for Hamiltonian systems, BIT 28, 877–883.

    Article  MathSciNet  MATH  Google Scholar 

  • Sanz-Serna, J. M. [1991] Symplectic integrators for Hamiltonian problems: an overview. Acta Num., 1, 243–286.

    Article  MathSciNet  Google Scholar 

  • Sanz-Serna, J. M. [1996] Backward error analysis of symplectic integrators. Fields Inst Comm., 10, 193–205.

    MathSciNet  Google Scholar 

  • Sanz-Serna, J. M. and M. Calvo [1994] Numerical Hamiltonian Problems. Chapman and Hall, London.

    Google Scholar 

  • Seliger, R.L. and G.B. Whitham [1968] Variational principles in continuum mechanics, Proc. Roy. Soc. Lond. 305, 1–25.

    Article  MATH  Google Scholar 

  • Shibberu, Y. [1994]. Time-discretization of Hamiltonian systems. Computers Math. Applic., 28, 123–145.

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J.C. and F. Armero [1994] Unconditional Stability and Long-Term Behavior of Transient Algorithms for the Incompressible Navier-Stokes and Euler Equations. Comp. Meth. Appl. Mech. Eng. 111, 111–154.

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J.C. and M. Doblare [1991], Nonlinear Dynamics of Three-Dimensional Rods: Momentum and Energy Conserving Algorithms, Intern. J. Num. Methods in Eng.

    Google Scholar 

  • Simo, J.C. and O. Gonzalez. [1993], Assessment of Energy-Momentum and Symplectic Schemes for Stiff Dynamical Systems. Proc. ASME Winter Annual Meeting, New Orleans, Dec. 1993.

    Google Scholar 

  • Simo, J.C, D.R. Lewis, and J.E. Marsden [1991] Stability of relative equilibria I: The reduced energy momentum method, Arch. Rat. Mech. Anal. 115, 15–59.

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J.C. and J.E. Marsden [1984] On the rotated stress tensor and a material version of the Doyle Ericksen formula, Arch. Rat. Mech. Anal. 86, 213–231.

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J.C., J.E. Marsden, and P.S. Krishnaprasad [1988] The Hamiltonian structure of nonlinear elasticity: The material, spatial, and convective representations of solids, rods, and plates, Arch. Rat. Mech. Anal. 104, 125–183.

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J.C., T.A. Posbergh, and J.E. Marsden [1990] Stability of coupled rigid body and geometrically exact rods: block diagonalization and the energy-momentum method, Physics Reports 193, 280–360.

    Article  MathSciNet  Google Scholar 

  • Simo, J.C., T.A. Posbergh, and J.E. Marsden [1991] Stability of relative equilibria II: Three dimensional elasticity, Arch. Rat. Mech. Anal. 115, 61–100.

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J.C. and N. Tarnow [1992] The discrete energy momentum method. Conserving algorithms for nonlinear elastodynamics, ZAMP 43, 757–792.

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J.C. and N. Tarnow [1994] A New Energy Momentum Method for the Dynamics of Nonlinear Shells, Int. J. Num. Meth. Eng., 37, 2527–2549.

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J.C. and N. Tarnow and M. Doblare [1993] Nonlinear Dynamics of Three-Dimensional Rods: Exact Energy and Momentum Conserving Algorithms. Comp. Meth. Appl. Mech. Eng.

    Google Scholar 

  • Simo, J.C., N. Tarnow, and K.K. Wong [1992] Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics Comp. Meth. Appl. Mech. Eng. 100, 63–116.

    Article  MathSciNet  MATH  Google Scholar 

  • Simo, J.C. and K.K. Wong [1989] Unconditionally stable algorithms for the orthogonal group that exactly preserve energy and momentum, Int. J. Num. Meth. Eng. 31, 19–52, addendum, 33, 1321–1323, 1992.

    Google Scholar 

  • Verlet, L. [1967]. Computer experiments on classical fluids. Phys. Rev, 159, 98–103.

    Article  Google Scholar 

  • Veselov, A.P. [1988] Integrable discrete-time systems and difference operators. Funct. An. and Appl. 22, 83–94.

    Article  MathSciNet  MATH  Google Scholar 

  • Veselov, A.P. [1991] Integrable Lagrangian correspondences and the factorization of matrix polynomials. Funct. An. and Appl. 25, 112–123.

    Article  MathSciNet  MATH  Google Scholar 

  • Wendlandt, J. [1995]. Pattern evocation and energy-momentum integration of the double spherical pendulum. MA thesis, University of California at Berkeley. Department of Mathematics, CPAM-656.

    Google Scholar 

  • Wendlandt, J.M. and J.E. Maxsden [1996] Mechanical integrators derived from a discrete variational principle, Caltech CDS Technical Report 96–013.

    Google Scholar 

  • Wendlandt, J. and Sastry, S. [1996]. Recursive workspace control of multi-body systems: A planar biped example, IEEE CDC, Kobe, Japan, Dec, 1996.

    Google Scholar 

  • Wisdom, J., and M. Holman [1992] Symplectic maps for the N body problem, Astron. J., 102, 1528–1538.

    Article  Google Scholar 

  • Wisdom, J., and M. Holman and J. Tourna [1996] Symplectic correctors. Fields Inst Comm., 10, 217–244.

    MathSciNet  Google Scholar 

  • Yoshida, H. [1990]. Construction of higher order symplectic integrators. Phys. Lett. A, 150, 262–268.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this paper

Cite this paper

Marsden, J.E., Wendlandt, J.M. (1997). Mechanical Systems with Symmetry, Variational Principles, and Integration Algorithms. In: Alber, M., Hu, B., Rosenthal, J. (eds) Current and Future Directions in Applied Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-2012-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2012-1_18

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7380-6

  • Online ISBN: 978-1-4612-2012-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics