Skip to main content

On the Well-Posedness of the Rational Covariance Extension Problem

  • Conference paper
Current and Future Directions in Applied Mathematics

Abstract

In this paper, we give a new proof of the solution of the rational covariance extension problem, an interpolation problem with historical roots in potential theory, and with recent application in speech synthesis, spectral estimation, stochastic systems theory, and systems identification. The heart of this problem is to parameterize, in useful systems theoretical terms, all rational, (strictly) positive real functions having a specified window of Laurent coefficients and a bounded degree. In the early 1980’s, Georgiou used degree theory to show, for any fixed “Laurent window”, that to each Schur polynomial there exists, in an intuitive systems-theoretic manner, a solution of the rational covariance extension problem. He also conjectured that this solution would be unique, so that the space of Schur polynomials would parameterize the solution set in a very useful form. In a recent paper, this problem was solved as a corollary to a theorem concerning the global geometry of rational, positive real functions. This corollary also asserts that the solutions are analytic functions of the Schur polynomials.

After giving an historical motivation and a survey of the rational covariance extension problem, we give a proof that the rational covariance extension problem is well-posed in the sense of Hadamard, i.e a proof of existence, uniqueness and continuity of solutions with respect to the problem data. While analytic dependence on the problem data is stronger than continuity, this proof is much more streamlined and also applies to a broader class of nonlinear problems. The paper concludes with a discussion of open problems.

This Research was supported in part by grants from AFOSR, TFR, the Göran Gustafson Foundation, and Southwestern Bell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. I. Akhiezer, The Classical Moment Problem, Hafner, 1965.

    Google Scholar 

  2. L. Auslander and R. E. MacKenzie, Introduction to Differentiate Manifolds, Dover Publications, New York, 1977.

    Google Scholar 

  3. A. Bialynicki-Birula and M. Rosenlicht, Infective morphisms of real algebraic varieties, Proc. Am. Math. Soc. 13 (1962), 200–203.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. P. Burg, Maximum entopy spectral analysis, Department of Geophysics, Stanford University, 1975.

    Google Scholar 

  5. C. I. Byrnes and A. Lindquist, On the geometry of the Kimura-Georgiou parameterization of modelling filter, Inter. J. of Control 50 (1989), 2301–2312.

    Article  MathSciNet  MATH  Google Scholar 

  6. C. I. Byrnes and A. Lindquist, On the partial stochastic realization problem, submitted to IEEE Trans. Automatic Control.

    Google Scholar 

  7. C. I. Byrnes, A. Lindquist, S. V. Gusev and A. V. Matveev, A complete parameterization of all positive rational extensions of a covariance sequence, IEEE Trans. Automatic Control AC-40 (1995), 1841–1857.

    Google Scholar 

  8. C. I. Byrnes, A. Lindquist, and T. McGregor, Predictability and unpredictability in Kaiman filtering, IEEE Transactions Auto. Control AC-36 (1991), 563–579.

    Google Scholar 

  9. C. I. Byrnes, A. Lindquist, and Y. Zhou, Stable, unstable and center manifolds for fast filtering algorithms, Modeling, Estimation and Control of Systems with Uncertainty (G. B. Di Masi, A. Gombani, and A. Kurzhanski, eds. ), Birkhauser Boston Inc., 1991.

    Google Scholar 

  10. C. I. Byrnes, A. Lindquist, and Y. Zhou, On the nonlinear dynamics of fast filtering algorithms, SIAM J. Control and Optimization, 32 (1994), 744–789.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann. 64 (1907), 95–115.

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Carathéodory, Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Functionen, Rend, di Palermo 32 (1911), 193–217.

    Article  MATH  Google Scholar 

  13. Ph. Delsarte, Y. Genin, Y. Kamp and P. van Dooren, Speech modelling and the trigonometric moment problem, Philips J. Res. 37 (1982), 277–292.

    MathSciNet  MATH  Google Scholar 

  14. C. J. Demeure and C. T. Mullis, The Euclid algorithm and the fast computation of cross-covariance and autocovariance sequences, IEEE Transactions Acoustics, Speech and Signal Processing ASSP-37 (1989), 545–552.

    Google Scholar 

  15. F. R. Gantmacher, The Theory of Matrices, Chelsea, New York, 1959.

    Google Scholar 

  16. T. T. Georgiou, Partial realization of covariance sequences, CMST, Univ. Florida, Gainesville, 1983.

    Google Scholar 

  17. T. T. Georgiou, Realization of power spectra from partial covariance sequences, IEEE Transactions Acoustics, Speech and Signal Processing ASSP-35 (1987), 438–449.

    Google Scholar 

  18. Ya. L. Geronimus, Orthogonal polynomials, Consultants Bureau, New York, 1961.

    Google Scholar 

  19. W. B. Gragg and A. Lindquist, On the partial Realization problem, Linear Algebra and its Applications 50 (1983), 277–319.

    Article  MathSciNet  MATH  Google Scholar 

  20. U. Grenander and G. Szegö, Toeplitz forms and their applications, Univ. California Press, 1958.

    Google Scholar 

  21. S. Haykin, Toeplitz forms and their applications, Springer-Verlag, 1979.

    Google Scholar 

  22. R. E. Kaiman, Realization of covariance sequences, Proc. Toeplitz Memorial Conference ( 1981 ), Tel Aviv, Israel, 1981.

    Google Scholar 

  23. R. E. Kaiman, On minimal partial realizations of a linear input/output map, in Aspects of Network and System Theory ( R. E. Kaiman and N. de Claris, eds.), Holt, Reinhart and Winston, 1971, 385–408.

    Google Scholar 

  24. R. E. Kaiman, On partial realizations, transfer functions and canonical forms, Acta Polytech. Scand. MA31 (1979), 9–39.

    Google Scholar 

  25. S. M. Kay and S. L.Marple, Jr., Spectrum Analysis-A modern perspective, Proceedings IEEE 69 (1981), 1380–1419.

    Article  Google Scholar 

  26. H. Kimura, Positive partial realization of covariante sequences, Modelling, Identification and Robust Control (C. I. Byrnes and A. Lindquist, eds. ), North-Holland, 1987, pp. 499–513.

    Google Scholar 

  27. A. Lindquist and G. Picci, Canonical correlation analysis, approximate covariance extension, and identification of stationary time series, Automatica 32 (1996), 709–733.

    Article  MathSciNet  MATH  Google Scholar 

  28. J.Makhoul, Linear prediction: A tutorial review, Proceedings IEEE 63 (1975), 561–580.

    Google Scholar 

  29. S. L.Marple, Jr., Digital Spectral Analysis and Applications, Prentice-Hall, 1987.

    Google Scholar 

  30. J. W. Milnor, Lectures in Modern Mathematics Vol. 1, edited by T. L. Saaty, John Whiley and Sons, 1964, pp. 165–183.

    Google Scholar 

  31. J. W. Milnor, Topology from Differentiable Viewpoint, University of Virginia Press, 1967.

    Google Scholar 

  32. D. J. Newman, One-one polynomial maps, Proc. Am. Math. Soc. 11 (1960), 867–870.

    Article  Google Scholar 

  33. J. Rissanen, Recursive identification of linear systems, SIAM J. Control 9 (1971), 420–430.

    Google Scholar 

  34. I. Schur, On power series which are bounded in the interior of the unit circle I and II, Journal fur die reine und angewandte Mathematik 148 (1918), 122–145.

    Google Scholar 

  35. O. Toeplitz, Über die Fouriersche Entwicklung positiver Funktionen, Rendiconti del Circolo Matematico di Palermo 32 (1911), 191–192.

    Article  MATH  Google Scholar 

  36. A. S. Willsky, Digital Signal Processing and Control and Estimation Theory, MIT Press, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this paper

Cite this paper

Byrnes, C.I., Landau, H.J., Lindquist, A. (1997). On the Well-Posedness of the Rational Covariance Extension Problem. In: Alber, M., Hu, B., Rosenthal, J. (eds) Current and Future Directions in Applied Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-2012-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2012-1_13

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7380-6

  • Online ISBN: 978-1-4612-2012-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics