Advertisement

Undecimated Wavelet Transform from Orthogonal Spline Wavelets

  • Eduardo P. Serrano
  • Marcela A. Fabio
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

The decimated discrete wavelet transform (DWT) gives us a powerful tool in many signal processing applications. It provides stable time—scale representations for any square integrable function as well as a suitable structure of the available information. In connection with this choice, well known families of biorthogonal or orthogonal wavelets are available.

Keywords

Discrete Wavelet Transform Wavelet Transform Wavelet Coefficient Spline Function Multiresolution Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. M. Ahlberg, E. N. Nilson and J. L. Walsh, The Theory of Splines and Their Applications, Academic Press, New York, 1967.MATHGoogle Scholar
  2. [2]
    A. Aldroubi and M. Unser, Families of Multiresolution and Wavelet Spaces with Optimal Properties, Numer. Funct. Anal, and Optimz. 14, 1993.Google Scholar
  3. [3]
    A. Aldroubi, M. Unser and M. Eden, Cardinal Spline Filters: Stability and Convergence to the Ideal Sinc Interpolator, Signal Process. 28, 1992.Google Scholar
  4. [4]
    A. Aldroubi and M. Unser, Families of Wavelet Transforms in Connection with the Shannon’s Sampling Theory and the Gabor Transform, In Wavelets: A Tutorial in Theory and Applications, Academic Press Inc., San Diego, 1992.Google Scholar
  5. [5]
    A. Aldroubi and M. Unser, Sampling Procedures in Function Spaces and Asymptotic Equivalence with Shannon’s Sampling Theory, Numer. Funct. Anal, and Optimz. 15, 1994.Google Scholar
  6. [6]
    G. Battle, A block spin construction of ondelettes. Part I: Lemarié functions, Comm. Math. Phys. 110, 1987.Google Scholar
  7. [7]
    G. Battle, Cardinal Spline Interpolation and the Block Spin Construction of Wavelets, In Wavelets: A Tutorial in Theory and Applications, Academic Press Inc., San Diego, 1992.Google Scholar
  8. [8]
    C. K. Chui, Multivariate Splines, SIAM, Philadelphia, 1991.Google Scholar
  9. [9]
    C. K. Chui, An Introduction to Wavelets, Academic Press, Boston, 1992.MATHGoogle Scholar
  10. [10]
    C. K Chui et al, Wavelets: A Tutorial in Theory and Applications, Academic Press Inc., San Diego, 1992.Google Scholar
  11. [11]
    I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41, 1988.Google Scholar
  12. [12]
    I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.Google Scholar
  13. [13]
    P. Dutilleux, An Implementation of the Algorithm A Trous to Compute the Wavelet Transform, In Proceeding of the International Conference on Wavelets, Time-Frequency Methods and Phase Space-Marseille-France, Berlin: Springer-Verlag, 1987.Google Scholar
  14. [14]
    P. J. Davies, Interpolation & Approximation, Dover Pub. Inc., New York, 1975.Google Scholar
  15. [15]
    A. Grossmann, R. Kronland-Martinet, J. Morlet, Reading and Understanding Cotinuous Wavelet Transforms, In Proceeding of the International Conference on Wavelets, Time-Frequency Methods and Phase Space-Marseille-France, Berlin: Springer-Verlag, 1987.Google Scholar
  16. [16]
    A. Grossmann, Wavelet Transforms and Edge Detection, Preprint, CNRS, Marseille, 1986.Google Scholar
  17. [17]
    C. E. Heil and D. F. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31, 1989.Google Scholar
  18. [18]
    J. R. Higgins, Five Short Stories about the Cardinal Series, Bull. Am. Math. Soc, 12, No 1, 1985.Google Scholar
  19. [19]
    M. Holschneider, R. Kronland-Martinet, J. Morlet, Ph. Tchamitchian, A Real Time Algorithm for Signal Analysis with the Help of the Wavelet Transforms, In Proceeding of the International Conference on Wavelets, Time-Frequency Methods and Phase Space-Marseille-France, Berlin: Springer-Verlag, 1987.Google Scholar
  20. [20]
    P. G. Lemarié, Une nouvelle Base d’ondelettes de L 2 (Rn ). J. Math. Pure et Appl. 67, 1988.Google Scholar
  21. [21]
    S. Mallat, A theory of multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Machine Intell. 11, 1989.Google Scholar
  22. [22]
    S. Mallat, Multiresolution approximations and wavelet orthonormal bases of L 2 (R), Trans. Amer. Math. Soc. 315, 1989.Google Scholar
  23. [23]
    S. Mallat, Multiresolution Representations and Wavelets, Grasp. Lab. 153, Univ. of Pennsylvania, Philadelphia, 1988.Google Scholar
  24. [24]
    S. Mallat, Multifrequency Channel Decompositions of Images and Wavelet Models, IEEE Trans. Acoust., Speech and Signal Process., 41, No 12, 1989.Google Scholar
  25. [25]
    S. Mallat, Zero Crossing of Wavelet Transform, IEEE Trans, on Information Theory 37, 1991.Google Scholar
  26. [26]
    S. Mallat and Z. Zhang, Complete Signal Representation with Multiscale Edges, Technical Report No 483, New York Univ., 1989.Google Scholar
  27. [27]
    S. Mallat and W. L. Hwang, Singularity Detection and Processing with Wavelets, Technical Report No 549, New York Univ., 1991.Google Scholar
  28. [28]
    S. Mallat and W. L. Hwang, Singularity Detection and Processing with Wavelets, IEEE Trans, on Information Theory, 38, No 2, 1992.Google Scholar
  29. [29]
    S. Mallat and Z. Zhang, Characterization of Signals from Multiscale Edges, Technical Report No 592, New York Univ., 1991.Google Scholar
  30. [30]
    Y. Meyer, Ondelettes, fonctions splines et analyses graduées, Rend. Sem. Mat. Univers. Politecn. Torino 45, Torino, 1987.Google Scholar
  31. [31]
    Y. Meyer, Wavelets and Operators,Cahiers de Mathématiques de la decision 8704, CEREMADE, Universite de Paris Dauphine, Paris, 1989.Google Scholar
  32. [32]
    Y. Meyer, Ondelettes, Filters Miroirs en Quadrature et Trait-ment Numérique de l’Imagen,Cahiers de Mathématiques de la decision 8914, CEREMADE, Université de Paris Dauphine, Paris, 1989.Google Scholar
  33. [33]
    Y. Meyer, Ondelettes et Operateurs, Tomes I, II, III. Hermann, Paris, 1990.Google Scholar
  34. [34]
    Y. Meyer, Wavelets: Algorithms & Applications, SIAM, Philadelphia, 1993.Google Scholar
  35. [35]
    Y. Meyer, In Book Reviews, Bull. Amer. Math. Soc, 28, 1993.Google Scholar
  36. [36]
    M. J. Powell, Approximation Theory and Methods, Cambridge University Press, Cambridge, 1981.MATHGoogle Scholar
  37. [37]
    O. Rioul and P. Duhamel, Fast Algorithms for Discrete and Contiuous Wavelet Transforms, IEEE Trans, on Information Theory, 38, No 2, 1992.Google Scholar
  38. [38]
    M. J. Shensa, The Discrete Wavelet Transform: Wedding the A Trous and Mallat Algorithms, IEEE Trans. Acoust., Speech and Signal Process. 40, No 10, 1992.Google Scholar
  39. [39]
    I. J. Schoenberg, Cardinal Spline Interpolation, SIAM, Philadelphia, 1993.Google Scholar
  40. [40]
    E. Serranoy D. Melas, Algoritmo rápido para el análisis de senales mediante ondelettes spline, Publicaciones Previas IAM-Conicet 191, 1992.Google Scholar
  41. [41]
    E. Serrano, Tesis Doctoral, Dep. Mat., FCEyN, Universidad de Buenos Aires, 1996.Google Scholar
  42. [42]
    E. Serranoy M. Fabio, Variaciones en 1a Transformada Wavelet, In Adas del Segundo Congreso Dr. A. Monteiro Universidad del Sur, Bahia Bianca, 1993.Google Scholar
  43. [43]
    E. Serrano and M. Fabio, Applications of the Wavelet Transform to Acoustic Signal Processing IEEE Trans. Acoust., Speech and Signal Process., 44, No 5, 1996.Google Scholar
  44. [44]
    E. Serrano, Some Remarks about Compactly Supported Spline Wavelets, Appl. Comput. Harmonic Analysis., 3, No 1,1996. 1996.Google Scholar
  45. [45]
    Special Issue on Wavelet Transform Multiresolution Signal Analysis, IEEE Trans, on Information Theory, 38, No 2, 1992.Google Scholar
  46. [46]
    Special Issue on Wavelets and Signal Processing, IEEE Trans. Acoust., Speech and Signal Processing, 41, No 12, 1993.Google Scholar
  47. [47]
    M. Unser, A. Aldroubi and M. Eden, Fast B-Spline Transforms for Continuous Image Representation and Interpolation, IEEE Trans. Pattern Anal. Machine Intell. 13, 1991.Google Scholar
  48. [48]
    M. Unser, A. Aldroubi and M. Eden, On The Asymptotic Convergence of B-Spline to Gabor Functions, IEEE Trans, on Information Theory, 38, No 2, 1992.Google Scholar
  49. [49]
    M. Unser and M. Eden, FIR Approximations of Inverse Filters and Perfect Reconstruction Filter Banks, Signal Process. 36, 1992.Google Scholar
  50. [50]
    M. Unser, A. Aldroubi and M. Eden, The L 2 Polynomial Spline Pyramid’, IEEE Trans. Pattern Anal. Machine Intell. 15, 1993.Google Scholar
  51. [51]
    M. Unser, A. Aldroubi and M. Eden, A family of polynomial spline wavelet transforms, Signal Process. 30, 1993.Google Scholar
  52. [52]
    M. Unser, A. Aldroubi and M. Eden, B-Spline Signal Proccesing: Part I-Theory, IEEE Trans. Acoust., Speech and Signal Process. 41, No 12, 1993.Google Scholar
  53. [53]
    M. Unser, A. Aldroubi and M. Eden, B-Spline Signal Proccesing: Part II-Efficient Design and Applications, IEEE Trans. Acoust., Speech and Signal Process. 41, No 12, 1993.Google Scholar
  54. [54]
    M. Unser, A. Aldroubi, Polynomial Splines and Wavelets-A Signal Processing Perpective In Wavelets: A Tutorial in Theory and Applications, San Diego: Ac. Press. Inc., 1992.Google Scholar
  55. [55]
    G. G. Walter, Traslation and Dilation Invariance in Orthogonal Wavelets, Appl. Comput. Harmonic Analysis., 1994.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Eduardo P. Serrano
  • Marcela A. Fabio

There are no affiliations available

Personalised recommendations