Skip to main content

Characterization of Epileptic EEG Time Series (II): Wavelet Transform and Information Theory

  • Chapter
Wavelet Theory and Harmonic Analysis in Applied Sciences

Abstract

Records of brain electrical activity from depth and scalp electrodes are used to localize the origin of seizure discharges in epileptic patients who are candidates for surgical removal of the seizure focus. In clinical practice, the epileptogenic loci is infered from visual analysis of the interictal and ictal discharges. Automated systems may be used to detect signal epochs that contain transients, patterns, and characteristic features of abnormal conditions. There are two basic areas of clinical application: 1) an automatic system for data reduction in long-term EEG; or 2) as a short-term detector of epileptic transients. Several techniques have been applied in order to solve the problem of computer assisted detection of epileptiform transients as previously mentioned by Blanco et al. in this book and others including template matching [11], parametric [1], mimetic [8] and syntactic [32] methods, neural networks [10], expert systems [12], phase-space topography [14], wavelet transforms [22, 23], and recently, polynomial spline and multiresolution frameworks [21].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Arakawa, D. Fender, H. Harashima, H. Miyakawa, and Y. Saitoh. Separation of a nonstationary component from the EEG by a nonlinear digital filter. IEEE Trans. Biomed. Eng.,33:724–726, 1986.

    Article  Google Scholar 

  2. A. Babloyantz. Evidence of chaotic dynamics of brain activity during the sleep cycle. In Meyer Kress, editor, Dimensions and Entropies in Chaotics Systems, pages 241–245, Springer Verlag, Berlin, 1986.

    Chapter  Google Scholar 

  3. E. Basar. Chaos in Brain Function. Springer Verlag, Berlin, 1990.

    Book  Google Scholar 

  4. S. Blanco, C. D’Attellis, S. Isaacson, O. Rosso, and R. Sirne. Time-frequency analysis of EEG series (ii): comparison between methods based on gabor and wavelets transforms. Physical Rev. E, Vol. 54, No. 5, 1996.

    Google Scholar 

  5. C. K. Chui. An Introduction to Wavelets. Academic Press, San Diego, 1992.

    MATH  Google Scholar 

  6. C. E. D’Attellis, S. I. Isaacson, and R. O. Sirme. Detection of epileptic events in EEG using wavelet theory. To appear in Annals of Biomédical Engineering.

    Google Scholar 

  7. I. Daubechies. Ten Lectures on Wavelets. Siam, Philadelphia, USA, 1992.

    Book  MATH  Google Scholar 

  8. P. Guedes de Oliveira, C. Queiroz, and F. Lopes de Silva. Spike detection based on a pattern recognition approach using a microcomputer. Electroenceph. Clin. Neorophysiol, 56:97–103, 1983.

    Article  Google Scholar 

  9. A. Dingle, R.D. Jones, G.J. Carroll, and W.R. Pright. A multistage system to detect epileptiform activity in the EEG. IEEE Trans. Biomed. Eng.,40:1260–1268, 1993.

    Article  Google Scholar 

  10. R.C. Eberhart, R.W. Dobbins, and W.R. Webber. Eeg waveform analysis using case-net. Proc. Conf. IEEE Eng. Med. Biol Soc, 2046–2047, 1989.

    Google Scholar 

  11. G. Fischer, N.J.I. Mars, and F. Lopes da Silva. Pattern recognition of epileptiform transients in the electroencephalogram. Inst. Med. Physi, Rep. 7, Utrecht, 1980.

    Google Scholar 

  12. J.R. Glover, D.N. Varmazis, and P.Y. Ktonas. Continued development of a knowledge-based system to detect epileptogenic sharp transients in the EEG. Proc. Conf. IEEE Eng. Med. Biol. Soc, 1374–1375, 1990.

    Google Scholar 

  13. L.D. Iasemidis, J. C. Sackellares, H.P. Zaveri, and W.J. Williams. Modelling of ecog in temporal lobe epilepsy. 25th Ann. Rocky Mountain Bioing. Symposium, 1201–1203, 1988.

    Google Scholar 

  14. L.D. Iasemidis, J. C. Sackellares, H.P. Zaveri, and W.J. Williams. Phase space topography and the lyapunov exponent of electrocorticograms in partial seizures. Brain Topogr.,2(3):187–201, 1990.

    Article  Google Scholar 

  15. S. Kochen, C. D’Attellis, R. Sirne S. Isaacson, P. Salgado, O. Rosso, C. Parpaglione, and L. Riquelme. Seizure localization using gabor transform, wavelet analysis and neural networks in depth EEC Annual Meeting American Epilepsy Soc. New Orleans, 4–6, 1994.

    Google Scholar 

  16. Y. Meyer. Ondelettes. Hermann Ed, Paris, France, 1990.

    Google Scholar 

  17. Y. Meyer. Wavelets, Algorithms and Applications. SIAM, Philadelphia, USA, 1993.

    Google Scholar 

  18. G. Meyer-Kress and S.C. Layne. Dimensionality of human electroencephalogram. In M. F. Shlesinger S. H. Koslow, A. J. Man-del, editor, Perspectives in Biologycal Dynamics and Theoretical Medicine, Ann. N.Y. Acad. Sci 504, New York, USA, 1987.

    Google Scholar 

  19. Y. B. Pesin. Characterisctic lyapunov exponents and smooth ergodic theory. Russ. Math. Surv, 32(4):55–114, 1977.

    Article  MathSciNet  Google Scholar 

  20. J. P. Pijn and F. H. Lopez da Silva. Propagation of electrical activity: nonlinear associations and time delays between EEG signals. Birkhäuser, Boston, 1993.

    Google Scholar 

  21. J. F. Schiff, A. Aldroubi, M. Unser, and S. Sato. Fast wavelet transformation of EEG. Electroencelography and Clinical Neu-rophysiology, 91:442–455, 1994.

    Article  Google Scholar 

  22. L. Senhadji, G. Carrault, and J. J. Bellanger. Detection et cartographie multi-échelles en EEG, pages 609–614. Editions Frontières, Paris, 1993.

    Google Scholar 

  23. L. Senhadji, G. Carrault, J.J. Bellanger, and G. Passarello. Quelques nouvelles applications de la transformée en ondelettes. Innov. Tech. Biol. Med.,14:389–403, 1993.

    Google Scholar 

  24. C. E. Shannon. A mathematical theory of comunication. The Bell System Technical Journal, 27(3):379–423, 1948.

    MathSciNet  MATH  Google Scholar 

  25. F. Takens. Detecting strange attractors in turbulence, pages 366–381. Berlin, 1981.

    Google Scholar 

  26. J. M. Thompson and Stewart. Non linear Dynamics and Chaos. Wiley and Sons, 1993.

    Google Scholar 

  27. M. Torres, L. Gamero, and E. D’Attellis. Detection of changes in Nonlinear dynamical systems using Multirresolution Entropy. Technical Report 2812, INRIA-Rapport de recherche, 1996.

    Google Scholar 

  28. M. Torres, L. Gamero, and E. D’Attellis. A multirresolution entropy approach to detect epileptic form activity in the EEG. In I. Pitas, editor, IEEE Workshop on non linear signal and image processing, pages 791–794, 1995.

    Google Scholar 

  29. M. Torres, L. Gamero, and E. D’Attellis. Pattern detection in EEG using multirresolution entropy. Latin American Applied Research, (53):53–57, 1995.

    Google Scholar 

  30. M. Unser. Fast Gabor-like windowed Fourier and continuous wavelet transform. IEEE Signal Process. Letters, (l):76–79, 1994.

    Article  Google Scholar 

  31. M. Unser, A. Aldroubi, and M. Eden. A family of polynomial spline wavelet transforms. Signal Process.,30:141–162, 1993.

    Article  MATH  Google Scholar 

  32. R. Walters, J. Principe, and S. Park. Spike detection using a syntactic pattern recognition approach. In IEEE Eng. Med. Biol. Soc, pages 1810–1811, 1989.

    Google Scholar 

  33. B. J. West. Fractal Physiology and Chaos in Medicine, Nonlinear Phenomena in Life Science. Volume I, World Scientific, Singapore, 1990.

    Google Scholar 

  34. B. J. West and Patterns. Information and Chaos in Neuronal Systems, Nonlinear Phenomena in Life Science, chapter II. World Scientific, Singapore, 1993.

    Google Scholar 

  35. A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining Lyapunov exponents from a time series. Physica D, 16:285–317, 1985.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

D’Attellis, C.E., Gamero, L.G., Isaacson, S.I., Sirne, R.O., Torres, M.E. (1997). Characterization of Epileptic EEG Time Series (II): Wavelet Transform and Information Theory. In: D’Attellis, C.E., Fernández-Berdaguer, E.M. (eds) Wavelet Theory and Harmonic Analysis in Applied Sciences. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-2010-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2010-7_10

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7379-0

  • Online ISBN: 978-1-4612-2010-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics