Skip to main content

Abstract

In this paper we discuss how certain saddle point problems, arising from discretizations of partial differential equations, should be preconditioned in order to obtain iterative methods which converge with a rate independent of the discretization parameters. The results for the discrete systems are motivated from corresponding results for the continuous systems. Our general approach is illustrated by studying Stokes’ problem, a mixed formulation of second order elliptic equations and a variational problem motivated from scattered data approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. P. Alfeld. Scattered data interpolation in three or more variables. In T. Lyche and L. L. Schumaker, editors, Mathematical Methods in Computer Aided Geometric Design, pages 1–33. Academic Press, 1989.

    Google Scholar 

  2. S. E. Arge and Ø. Hjelle. Software Tools for Modelling Scattered Data. This volume, page 45.

    Google Scholar 

  3. D. N. Arnold, R. S. Falk, and R. Winther. Preconditioning in H (div) and applications. To appear in Math. Comp., 1997

    Google Scholar 

  4. D. N. Arnold, R. S. Falk, and R. Winther. Preconditioning discrete approximations of the Reissner-Mindlin plate model. To appear in Math. Modeling Numer. Anal., 1997

    Google Scholar 

  5. R. E. Bank, B. D. Welfert, and H. Yserentant. A class of iterative methods for solving saddle point problems. Numer. Math., 56:645–666, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. H. Bramble and J. E. Pasciak. A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems. Math. Comp., 50(181):1–17, January 1988.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. H. Bramble, J. E. Pasciak, and A. T. Vassilev. Analysis of the inexact Uzawa algorithm for saddle point problems. Technical Report ISC-94-09-MATH, Institute for Scientific Computation, Texas A&M University, 1994.

    Google Scholar 

  8. A. C. Brenner and L. R. Scott. The mathematical theory of the finite element method. Springer Verlag, 1994.

    Google Scholar 

  9. F. Brezzi. On the existence, uniqueness and approximation of saddlepoint problems arising from Lagrange multipliers. R.A.I.R.O. Numerical Analysis, 8(2):129–151, 1974.

    MathSciNet  MATH  Google Scholar 

  10. F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods, volume 15 of Springer Series in Computational Mathematics. Springer-Verlag, 1991.

    Google Scholar 

  11. A. M. Bruaset. Iterative Solution of Sparse Linear Systems. This volume, page 255

    Google Scholar 

  12. J. Duchon. FrInterpolation des fonctions de deux variables suivant le principles de la flexion de plaques minces. R.A.I.R.O. Analyse Numeriques, 10:5–12, 1976.

    MathSciNet  Google Scholar 

  13. H. C. Elman and G. Golub. Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal., 31(6):1645–1661, December 1995.

    Article  MathSciNet  Google Scholar 

  14. V. Girault and P. A. Raviart. Finite Element Methods for the Navier-Stokes Equations, volume 5 of Springer Series in Computational Mathematics. Springer-Verlag, 1986.

    Google Scholar 

  15. W. Hackbush Iterative Solution of Large Sparse Systems of Equations Springer-Verlag, 1995.

    Google Scholar 

  16. J. C. Holladay. Smoothest curve approximation. Math. Tables Aid Computation, 11:233–243, 1957.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal., 12(4):617–629, September 1975.

    Article  MathSciNet  MATH  Google Scholar 

  18. W. Queck. The convergence factor of preconditioned algorithms of the Arrow-Hurwich type. SIAM J. Numer. Anal., 26(4):1016–1030, August 1989.

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Rusten, and R. Winther. A preconditioned iterative method for saddle point problems. SIAM J. Matrix Anal. Appl, 13(3):887–904, July 1992.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. S. Silvester and A. J. Wathen. Fast iterative solution of stabilised Stokes systems, part II: using general block preconditioners. SIAM J. Numer. Anal., 31(5):1352–1367, October 1994.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Xu. Iterative methods by space decomposition and subspace correction. SIAM Review, 34:581–613, December 1993.

    Article  Google Scholar 

  22. X. Zhang. Multilevel schwarz methods for the biharmonic dirichlet problem. SIAM J. Sci. Comput., 15(3):495–510, May 1994.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rusten, T., Winther, R. (1997). Preconditioning Linear Saddle Point Problems. In: Dæhlen, M., Tveito, A. (eds) Numerical Methods and Software Tools in Industrial Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1984-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1984-2_13

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7367-7

  • Online ISBN: 978-1-4612-1984-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics