Skip to main content

Abstract

This chapter is concerned with efficient methods for iterative solution of large sparse systems of linear equations, typically derived from the discretization of an elliptic boundary value problem. In particular, attention is given to the family of Krylov subspace methods, as well as to several preconditioning strategies that are suitable for improving the convergence rates of such iterations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. S. F. Ashby, T. A. Manteuffel, and P. E. Saylor. Adaptive polynomial preconditioning for Hermitian linear systems. BIT, 29:583–609, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. F. Ashby, T. A. Manteuffel, and P. E. Saylor. A taxonomy for conjugate gradient methods. SIAM J. Numer. Anal., 27:1542–1568, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  3. O. Axelsson. A generalized SSOR method. BIT, 13:443–467, 1972.

    Article  MathSciNet  Google Scholar 

  4. O. Axelsson. Incomplete block matrix factorization preconditioning methods. The ultimate answer? J. Comput. Appl. Math., 12/13:3–18, 1985.

    Article  MathSciNet  Google Scholar 

  5. O. Axelsson and G. Lindskog. On the eigenvalue distribution of a class of preconditioning methods. Numer. Math., 48:479–498, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. A. van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, 1993.

    Google Scholar 

  7. J. H. Bramble. Multigrid Methods, volume 294 of Pitman Research Notes in Mathematics Series. Addison-Wesley Longman, 1993.

    Google Scholar 

  8. C. Brezinski, M. R. Zaglia, and H. Sadok. Avoiding breakdown and near-breakdown in Lanczos type algorithms. Numer. Algorithms, 1:261–284, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. M. Bruaset. A Survey of Preconditioned Iterative Methods, volume 328 of Pitman Research Notes in Mathematics Series. Addison-Wesley Longman, 1995.

    Google Scholar 

  10. A. M. Bruaset and H. P. Langtangen. Object-oriented design of preconditioned iterative methods in Diffpack. To appear in ACM Transactions on Mathematical Software, 1997.

    Google Scholar 

  11. A. M. Bruaset and H. P. Langtangen. A comprehensive set of tools for solving partial differential equations; Diffpack. This volume, page 61.

    Google Scholar 

  12. A. M. Bruaset, H. P. Langtangen and G. Zumbusch. Domain decomposition and multilevel methods in Diffpack. Report STF42 A96017, SINTEF Applied Mathematics, 1996. (Submitted for publication).

    Google Scholar 

  13. A. M. Bruaset and A. Tveito. RILU preconditioning; A computational study. J. Comput. Appl. Math., 39:259–275, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. M. Bruaset, A. Tveito, and R. Winther. On the stability of relaxed incomplete LU factorizations. Math. Comp., 54:701–719, 1990.

    MathSciNet  MATH  Google Scholar 

  15. H. C. Elman. A stability analysis of incomplete LU factorizations. Math. Comp., 47:191–217, 1986.

    MathSciNet  MATH  Google Scholar 

  16. V. Faber and T. Manteuffel. Necessary and sufficient conditions for the existence of a conjugate gradient method. SIAM J. Numer. Anal., 21:352–362, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Fletcher. Conjugate gradient methods for indefinite systems. In Numerical Analysis, Dundee 1975, volume 506 of Lect. Notes in Math., pages 73–89. Springer-Verlag, 1976.

    MathSciNet  Google Scholar 

  18. R. W. Freund. A transpose-free quasi-minimal residual algorithm for non-hermitian linear systems. SIAM J. Sci. Comput., 14:470–482, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. W. Freund, G. H. Golub, and N. M. Nachtigal. Iterative solution of linear systems. In A. Iserles, editor, Acta Numerica 1992, pages 1–44. Cambridge University Press, 1992.

    Google Scholar 

  20. R. W. Freund and N. M. Nachtigal. QMR: A quasi-minimal residual method for non-Hermitian linear systems. Numer. Math., 60:315–339, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  21. G. H. Golub and D. P. O’Leary. Some history of the conjugate gradient and Lanczos algorithms: 1948–1976. SIAM Review, 31:50–102, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins University Press, 1989.

    Google Scholar 

  23. A. Greenbaum. Comparison of splittings used with the conjugate gradient algorithm. Numer. Math., 33:181–194, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Greenbaum. Diagonal scalings of the Laplacian as preconditioners for other elliptic differential operators. SIAM J. Matrix Anal., 13:826–846, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  25. I. Gustafsson. On first order factorization methods for the solution of problems with mixed boundary conditions and problems with discontinuous material coefficients. Research Report 77.13R, Chalmers University of Technology and the University of Gothenburg, Sweden, 1977.

    Google Scholar 

  26. M. H. Gutknecht. A completed theory of the unsymmetric Lanczos process and related algorithms, part I. SIAM J. Matrix Anal., 13:594–639, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. R. Hestenes and E. Stiefel. Method of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand., 49:409–436, 1952.

    Article  MathSciNet  MATH  Google Scholar 

  28. W. Joubert. Lanczos methods for the solution of nonsymmetric systems of linear equations. SIAM J. Matrix Anal., 13:926–943, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  29. E. F. Kaasschieter. A general finite element preconditioning for the conjugate gradient method. BIT, 29:824–849, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  30. C. Lanczos. Solution of systems of linear equations by minimized iterations. J. Res. Nat. Bur. Stand., 49:33–53, 1952.

    Article  MathSciNet  Google Scholar 

  31. J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math. Comp., 31:148–162, 1977.

    MathSciNet  MATH  Google Scholar 

  32. N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen. How fast are nonsymmetric matrix iterations? SIAM J. Matrix Anal., 13:778–795, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  33. C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal., 12:617–629, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  34. U. Rude. Mathematical and Computational Techniques for Multilevel Adaptive Methods. SIAM, 1993.

    Google Scholar 

  35. Y. Saad and M. H. Scultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 7:856–869, 1986.

    Article  MATH  Google Scholar 

  36. B. Smith, P. Bjørstad and W. Gropp. Domain Decomposition. Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, 1996.

    Google Scholar 

  37. P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 10:36–52, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  38. C. H. Tong. A comparative study of preconditioned Lanczos methods for nonsymmetric linear systems. Report SAND91-8240B, Sandia National Labs., Livermore, 1992.

    Google Scholar 

  39. H. A. van der Vorst. High performance preconditioning. SIAM J. Sci. Stat. Comput., 10:1174–1185, 1989.

    Article  MATH  Google Scholar 

  40. P. K. W. Vinsome. Orthomin, an iterative method for solving sparse sets of simultaneous linear equations. In Proceedings of 4th Symposium of Numerical Simulation of Reservoir Performance of the SPE, 1976. (Paper SPE 5729).

    Google Scholar 

  41. G. Zumbusch. Multigrid Methods in Diffpack. Report STF42 A96016, SINTEF Applied Mathematics, Oslo, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bruaset, A.M. (1997). Krylov Subspace Iterations for Sparse Linear Systems. In: Dæhlen, M., Tveito, A. (eds) Numerical Methods and Software Tools in Industrial Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1984-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1984-2_12

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7367-7

  • Online ISBN: 978-1-4612-1984-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics