Skip to main content

Localization in Noetherian Rings

  • Conference paper
Advances in Ring Theory

Part of the book series: Trends in Mathematics ((TM))

  • 330 Accesses

Abstract

When A is a left Noetherian ring with nilradical N, then there is a unitary subring B of A and ∑ a left denominator set in B such that Q, the ring of left fractions of B with respect to ∑ is left Artinian. Furthermore, for P = Q B A, P is a flat right A-module of type FP such that M, a left A-module, is C(N)-torsion if and only if P A M = 0. For the functors T = P A (·): A mоd→ Q-mod and S = Hom Q (P,·): Q-modA-mod, the natural transformation 1 → ST, MST(M) is the localization of M in A-mod with respect to the torsion theory on A-mod corresponding to the multiplicative set C(N).

When I is a semiprime ideal of a left Noetherian ring, then for each positive integer n, a ring Q n is constructed as above for N = I/I n the nilradical of A/ I n and a sequence Q n +1Q n of surjective ring homomorphisms with inverse limit Q a semiperfect ring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, F.W., Fuller, K.R. Rings and Categories of Modules. Graduate Texts in Mathemtics. Berlin-New York: Springer Verlag, 1974.

    Book  Google Scholar 

  2. Atiyah, M.F., MacDonald, I.G. Introduction to Commutative Algebra. Reading. Mass: Addison-Wesley, 1969.

    MATH  Google Scholar 

  3. Chatters, A.W., Goldie, A.W., Hajarnavis, C.R., and Lenagan, T.H. Reduced Rank in Noetherian Rings. J. of Alg. 61 582–89 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  4. Cozzens, J.H., Sandomierski, F.L. Localization at a Semiprime Ideal of a Right Noetherian Ring. Comm. in Alg. 5(7) 707–726 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  5. Eid, G.M. Classical Quotient Ring with Perfect Topologies. Ph.D. Thesis, Kent State University, 1983.

    Google Scholar 

  6. Jategaonkar, A.V. Localization in Noetherian Rings. London Math. Soc. Lecture Note Series, No. 98. Cambridge: Cambridge University Press, 1986.

    Book  MATH  Google Scholar 

  7. Goldie, A.W. The Structure of Prime Rings under Ascending Chain Conditions. Proc. London Math Soc. (3) 8 589–609 (1958).

    Article  MathSciNet  MATH  Google Scholar 

  8. Goldie, A.W. Semi-prime Rings with Maximum Condition. Proc. London Math Soc. (3) 10 201–220 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  9. Goldie, A.W. Torsion-free Modules and Rings. J. of Alg. 1 (1964) 268–287.

    Article  MathSciNet  MATH  Google Scholar 

  10. Goldman, O. Rings and Modules of Quotients. J. of Alg. 13 10–47 (1969).

    Article  MATH  Google Scholar 

  11. Goodearl, K.R., Warfield, R.B. An Introduction to Noncommutative Noethe-rian Rings. London Math. Soc. Student Texts, No. 16. Cambridge: Cambridge University Press, 1989.

    Google Scholar 

  12. Hinohara, Y. Note on Non-commutative Semi-local Rings. Nagoya Math. J. 17 161–166 (1960).

    MathSciNet  MATH  Google Scholar 

  13. Lambek, J., Michler, G. The Torsion Theory at a Prime Ideal of a Right Noethe-rian Ring. J. of Alg. 25, 364–389 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  14. McConnell, J.C., Robson, J.C. Noncommutative Noetherian Rings. Wiley-Inter-science Series. New York: John Wiley and Sons, 1987.

    MATH  Google Scholar 

  15. Morita, K. Localization at Categories of Modules I. Math Z. 114 121–144 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  16. Morita, K. Localization in Categories of Modules II. J. Reine Angew. Math 242 163–169 (1970).

    MathSciNet  MATH  Google Scholar 

  17. Morita, K. Localization in Categories of Modules III. Math Z. 119 313–320 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  18. Morita, K. Flat Modules, Injective Modules and Quotient Rings. MathZ. 120 25–40 (1971).

    Article  MATH  Google Scholar 

  19. Öre, O. Linear Equations in Non-commutative Fields. Annals of Math 32 463–477 (1931).

    Article  Google Scholar 

  20. Samuel, P., Zariski, O. Commutative Algebra, Vols. I and II. Princeton, New Jersey: D. Van Nostrad Co. Inc, 1960.

    MATH  Google Scholar 

  21. Stenström, B. Rings and Modules of Quotients. Lecture Notes in Math., Vol. 237. Berlin-New York: Springer-Verlag, 1971.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this paper

Cite this paper

Mcconnell, M., Sandomierski, F.L. (1997). Localization in Noetherian Rings. In: Jain, S.K., Rizvi, S.T. (eds) Advances in Ring Theory. Trends in Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1978-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1978-1_20

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7364-6

  • Online ISBN: 978-1-4612-1978-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics