Explicit Construction of Universal Deformation Rings

  • Bart de Smit
  • Hendrik W. LenstraJr.


Let G be a profinite group and let k be a field. By a k-representation of G we mean a finite dimensional vector space over k with the discrete topology, equipped with a continuous k-linear action of G. If V is a k-representation of G and A is a complete local ring with residue field k, then a deformation of V in A is an isomorphism class of continuous representations of G over A that reduce to V modulo the maximal ideal of A; precise definitions are given in Section 2. We denote by Def(V, A) the set of such deformations.


Isomorphism Class Explicit Construction Noetherian Ring Projective Limit Residue Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, Reading, Mass., 1969.Google Scholar
  2. 2.
    N. Bourbaki, Théorie des ensembles, Hermann, Paris, 1970.MATHGoogle Scholar
  3. 3.
    H. Carayol, Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet, pp. 213–237 in: B. Mazur and G. Stevens (eds), p-adic monodromy and the Birch and Swinnerton-Dyer conjecture, Contemp. Math. 165, Amer. Math. Soc., Providence, 1994.Google Scholar
  4. 4.
    B. Conrad, The flat deformation functor, Chapter XIV in this volume.Google Scholar
  5. 5.
    H. Darmon, F. Diamond, and R. Taylor, Fermat’s Last Theorem, pp. 1–107 in: R. Bott, A. Jaffe, and S. T. Yau (eds), Current developments in mathematics, 1995 International Press, Cambridge, MA, 1995.Google Scholar
  6. 6.
    A. Grothendieck, Technique de descente et théorèmes d’existence en géométrie algébrique, 77, Sém. Bourbaki 12 (1959/60), n° 195.Google Scholar
  7. 7.
    S. Lang, Algebra, 3rd ed., Addison-Wesley, Reading, Mass., 1993.MATHGoogle Scholar
  8. 8.
    B. Mazur, Deforming Galois representations, pp. 385–437 in: Y. Ihara, K. Ribet, and J-P. Serre (eds), Galois groups over Q, MSRI Publications 16, Springer-Verlag, New York, 1989.Google Scholar
  9. 9.
    C. Procesi, Rings with polynomial identities, Marcel Dekker, New York, 1973.MATHGoogle Scholar
  10. 10.
    C. Procesi, Deformations of representations, preprint, December 1995.Google Scholar
  11. 11.
    R. Ramakrishna, On a variation of Mazur’s deformation functor,Cornpositio Math. 87 (1993), 269–286.MathSciNetMATHGoogle Scholar
  12. 12.
    M. Schlessingcr, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208–222.MathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Wiles, Modular elliptic curves and Fermat’s Last Theorem, Ann. of Math. (2) 141 (1995), 443–551.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Bart de Smit
  • Hendrik W. LenstraJr.

There are no affiliations available

Personalised recommendations