Skip to main content

On Ternary Equations of Fermat Type and Relations with Elliptic Curves

  • Chapter

Abstract

The main purpose of this chapter is to show how arithmetical properties of elliptic curves E defined over global fields K and corresponding Galois representations are often related to interesting diophantine questions, amongst which the most prominent is without doubt Fermat’s Last Theorem, which has now become Wiles’ theorem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Abramovich, Subvarieties of Abelian Varieties and Jacobians of Curves, Thesis Harvard 1991.

    Google Scholar 

  2. J.B. Bost, Périodes et isogénies des variétés abeliennes sur les corps de nombres, Sém. Bourbaki 795 (1994–95).

    Google Scholar 

  3. H. Darmon, Serre’s conjecture, Sem. on Fermat’s Last Theorem, CMS Conf. Proc. AMS, to appear.

    Google Scholar 

  4. P. Deligne, Démonstration des conjectures de Tate et de Shafarevich (d’après G. Faltings),Séminaire Bourbaki 616, Astérisque 121–122 (1985), 25–41.

    Google Scholar 

  5. N.D. Elkies, ABC implies Mordell, Int. Math. Res. Not. 7, 99–109.

    Google Scholar 

  6. G. Faltings, The general case of S. Lang’s conjecture, Princeton University, 1992.

    Google Scholar 

  7. G. Frey, Links between solutions of A - B = C and elliptic curves, Number Theory (Ulm 1987), Lecture Notes in Math. 1380, Springer, 1989, pp. 31–62.

    MathSciNet  Google Scholar 

  8. G. Frey, Curves with infinitely many points of fixed degree, Israel J. of Math. 85, 79–83.

    Google Scholar 

  9. G. Frey, On elliptic curves with isomorphic torsion structures and correspond-ing curves of genus 2, Conference on Elliptic Curves and Modular Forms (Hong Kong), Intern. Press, 1995, pp. 79–98.

    Google Scholar 

  10. R. Hartshorne, Generalized divisors and Gorenstein curves and a theorem of Noether, Journ. Math. Kyoto 26 (1986), 375–385.

    MathSciNet  MATH  Google Scholar 

  11. Y. HellegouarchPoints d’ordre 2ph sur les courbes elliptiques, Acta Arith. 26(1975), 253–263.

    MathSciNet  MATH  Google Scholar 

  12. E. Kani, Letter to Mazur, Sept. 1995.

    Google Scholar 

  13. E. Kani and W. Schanz, Diagonal quotient surfaces (to appear).

    Google Scholar 

  14. L. Mai and M.R. MurtyThe Phragmén-Lindelöf theorem and modular elliptic curves, Contemp. Math. 166 (1994), 335–340.

    MathSciNet  Google Scholar 

  15. B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. IHES 47 (1977), 33–186.

    MathSciNet  MATH  Google Scholar 

  16. B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129–162.

    Article  MathSciNet  MATH  Google Scholar 

  17. A.N. ParshinThe Bogomolov-Miyaoka-Yau inequality for arithmetical sur-faces and its applications, Sém. Théorie Nombres Paris 1986/87, Progr. Math. 75 (1989), 299–312.

    MathSciNet  Google Scholar 

  18. K. RibetOn modular representations of G(Q I Q) arising from modular forms, Journ. Math. 100 (1990), 431–476.

    MathSciNet  MATH  Google Scholar 

  19. K. Ribet, On the equation a 9 .2 ~ +b’+c 0 = 0, Acta Arithmetica (to appear).

    Google Scholar 

  20. J.P. Serre, Sur les représentations modulaires de degré 2 de G(Q Q)Duke Math. J. 54 (1987), 179–230.

    Article  MathSciNet  MATH  Google Scholar 

  21. J.H. Silverman, The arithmetic of elliptic curves, Springer 1986

    MATH  Google Scholar 

  22. A. Wiles, Modular elliptic curves and Fermat’s Last Theorem, Ann. of Math.142 (1995), 443–551.

    Article  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Frey, G. (1997). On Ternary Equations of Fermat Type and Relations with Elliptic Curves. In: Cornell, G., Silverman, J.H., Stevens, G. (eds) Modular Forms and Fermat’s Last Theorem. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1974-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1974-3_20

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98998-3

  • Online ISBN: 978-1-4612-1974-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics