Hecke Algebras and the Gorenstein Property

  • Jacques Tilouine

Abstract

The goal of this paper is to show the importance of the Gorenstein property for the Hecke algebra and its relation with the local freeness of the cohomology of modular curves as a module over the Hecke algebra.

Keywords

Hull Stein Tate Fermat Neron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A-K]
    A. Altman, S. Kleinman, Introduction to Grothendieck duality theory, SLN,Springer.Google Scholar
  2. [B]
    H. BassOn the ubiquity of Gorenstein rings, Math. Zeit. 82 (1963), 8–28.MathSciNetMATHCrossRefGoogle Scholar
  3. [Bu]
    K. Buzzard, The levels of modular representations, Ph.D. thesis, Cambridge,1995.Google Scholar
  4. [D-R]
    P. Deligne, M. RapoportLes Schémas de modules de courbes elliptiequs, Mod-ular functions of one variable, SLN 349, Springer, 1973.Google Scholar
  5. [Gr]
    A. Grothendieck Local cohomology, SLN 41, Springer, 1967.Google Scholar
  6. [H]
    H. HidaOn congruence divisors of cusp forms as special values of their zeta functions, Invent. Math. 64 (1981), 221–262.MathSciNetMATHCrossRefGoogle Scholar
  7. [Ku]
    E. Kunz, Introduction to commutative algebra and algebraic geometry, Birk-hafiser, 1985.Google Scholar
  8. [Mat]
    H. Matsumura Commutative algebra, Benjamin, 1970.Google Scholar
  9. [M1]
    B. MazurModular curves and the Eisenstein ideal, Publ. Math. IHES 47 (1977), 133–186.Google Scholar
  10. [M2]
    B. Mazur Rational isogenies of prime degree, Invent. Math. 44 (1978), 129–162.MathSciNetMATHCrossRefGoogle Scholar
  11. [M-Ri]
    B. Mazur, K. Ribet, Two dimensional representations in the arithmetic of modular curves, in Courbes modulaires et courbes de Shimura, Astérisque 196–197 (1991).Google Scholar
  12. [M-T]
    B. Mazur, J. TilouineReprésentationns galoisiennes différentielles de Kähler et conjectures principales, Publ Math. IHES 71 (1990), 65–103.MathSciNetMATHGoogle Scholar
  13. [M-W]
    B. Mazur, A. Wiles, Class-fields of abelian extensions of Q, Invent. Math. 76 (1984), 179–330.MathSciNetMATHGoogle Scholar
  14. [Ral]
    M. Raynaud Variétés abéliennes et géométrie rigide,Actes Congres Int. Math.,vol. 1, 1970, pp. 473–477.Google Scholar
  15. [Ra2]
    M. Raynaud Spécialisation du foncteur de Picard, Publ. Math. IHES 38 (1970), 27–76.MathSciNetMATHGoogle Scholar
  16. [Ra3]
    M. Raynaud Schémas en groupes de type (p, p,…, p), Bull. Soc. Math. France 102 (1974), 241–280.MathSciNetMATHGoogle Scholar
  17. [Ta]
    J. Tatep-divisible groups, Proceedings of a conference on local fields (Drieber-gen 1966), Springer, 1967, pp. 158–183.Google Scholar
  18. [T-W]
    R. Taylor, A. WilesRing theoretic properties of certain Hecke algebras, Ann. Math. 141 (1995), 553–572.MathSciNetMATHCrossRefGoogle Scholar
  19. [Ti]
    J. Tilouine, Un sous-groupe p-divisible de la jacobienne de Xl(N;) comme module sur l’algébre de Hecke, Bull. Soc. Math. France 115 (1987), 329–360.MathSciNetMATHGoogle Scholar
  20. [Wl]
    A. Wiles, Modular curves and the class group of Q(pp), Invent. Math. 58 (1980), 407–456.MathSciNetCrossRefGoogle Scholar
  21. [W2]
    A. Wiles On p-adic representations for totally real fields, Ann. Math. 123 (1986), 407–456.MathSciNetMATHCrossRefGoogle Scholar
  22. [W3]
    A. Wiles The Iwasawa conjecture for totally real fields, Ann. Math. 131 (1990), 493–540.MathSciNetMATHCrossRefGoogle Scholar
  23. [W4]
    A. Wiles Modular elliptic curves and Fermat’s last theorem, Ann. Math. 142 (1995), 443–551.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Jacques Tilouine
    • 1
  1. 1.Université de Paris-NordParis-Nord

Personalised recommendations