An Overview of The Proof of Fermat’s Last Theorem

  • Glenn Stevens


The principal aim of this article is to sketch the proof of the following famous assertion.


Modular Form Elliptic Curve Elliptic Curf Galois Representation Modular Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Carayol, H.: Sur les représentations galoisiennes modulo P attachées aux formes modulaires. Duke Math. J. 59 (1989), 785–801.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Darmon, H., Diamond, F., Taylor, R. L.: Fermat’s Last Theorem. In Current Developments in Mathematics, 1995, International Press. To appear.Google Scholar
  3. [3]
    Deligne, P.: Formes modulaires et représentation f-adiques. Sém. Bourbaki, 1968/69, Exposé 355. Lect. Notes in Math. 179 (1971), 139–172.CrossRefGoogle Scholar
  4. [4]
    Deligne, P., Serre, J.-P.: Formes modulaires de poids 1. Ann. Sci. E.N.S. 7 (1974), 507–530.MathSciNetMATHGoogle Scholar
  5. [5]
    Diamond, F.: On deformations rings and Hecke rings. Ann. of math.. To appear.Google Scholar
  6. [6]
    Diamond, F.: The Taylor-Wiles construction and multiplicity one. Invent. Math.. To appear.Google Scholar
  7. [7]
    Frey, G.: Links between solutions of A — B = C and elliptic curves. In Number Theory, proceedings of the Journees arithmetiques, held in Ulm, 1987, H.P. Schlickewei, E. Wirsing, editors. Lecture notes in mathematics 1380. Springer-Verlag, Berlin, New York, 1989.Google Scholar
  8. [8]
    Frey, G.: Links between stable elliptic curves and certain Diophantine equations. Ann. Univ. Saraviensis, Ser. Math. 1 (1986), 1–40.Google Scholar
  9. [9]
    Hellegouarch, Y.: Points d’ordre 2ph sur les courbes elliptiques. Acta. Arith. 26 (1974/75), 253–263.MathSciNetGoogle Scholar
  10. [10]
    Mazur, B.: Deforming Galois representations. In Galois groups over Q: proceedings of a workshop held March 23–27, 1987, Y. Ihara, K. Ribet, J.-P. Serre, editors. Mathematical Sciences Research Institute publications 16. Springer-Verlag, New York,1989, pp. 385–437.Google Scholar
  11. [11]
    Mazur, B.: Modular curves and the Eisenstein ideal. Publ. Math. I.H.E.S. 47 (1977), 33–186.MathSciNetMATHGoogle Scholar
  12. [12]
    Murty, V.K.: Modular elliptic curves. in Seminar on Fermat’s Last Theorem. Canadian Math. Soc. Conf. Proc. 17, 1995.Google Scholar
  13. [13]
    Ribet, K.A.: On modular representations of Gal(Q/Q) arising from modular forms. Invent. math. 100 (1990), 431–476.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Oesterlé, J.: Travaux de Wiles (et Taylor,…), Partie II. Asterisque 237 (1996), 333–355.Google Scholar
  15. [15]
    Serre, J.-P.: Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15 (1972), 259–331.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Serre, J.-P.: Sur les représentations modulaires de degré 2 de Gal(Q/Q), Duke Math. J. 54 (1987), 179–230.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    Serre, J.-P.: Travaux de Wiles (et Taylor,…), Partie I. Asterisque 237 (1996), 319–332.Google Scholar
  18. [18]
    Taylor, R. L., Wiles, A.: Ring theoretic properties of certain Hecke algebras. Annals of Math. 141 (1995), 553–572.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    Vojta, P.: Diophantine Approximations and Value Distribution Theory. Lect. Notes in Math. 1239, 1987Google Scholar
  20. [20]
    Wiles, A.: Modular elliptic curves and Fermat’s Last Theorem. Annals of Math. 141 (1995), 443–551.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Glenn Stevens

There are no affiliations available

Personalised recommendations