Wavelet Transform and Multiscale Vision Models

  • Albert Bijaoui
  • Frédéric Rué
  • Renaud Savalle
Conference paper

Abstract

We have implemented multiscale vision models based on the wavelet transform to analyze field astronomical images. The discrete transform is performed by the à trous or the pyramidal algorithms. The vision models are based on the notion of the significant structures. Different kind of noises have beeen taken into account. We identify the pixels of the wavelet transform space (WTS) associated with the objects. At each scale a region labelling is carried out. An interscale connectivity graph is then established. In accordance with some rules that permit false detections to be removed, the objects and their sub-objects are identified. They define respectively trees and sub-trees in the graph. So, the identification of the WTS pixels of the tree related to a given object leads to the reconstruction of its image by the conjugate gradient method. The model has been tested successfully on astronomical images which shows that complex structures are better analyzed than using usual astronomical vision models.

Keywords

Deconvolution Harman 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BF95]
    A. Bijaoui and F. Rué. A multiscale vision model adapted to the astronomical images. Signal Processing, 46:345–362, 1995.CrossRefMATHGoogle Scholar
  2. [Bij80]
    A. Bijaoui. Skybackground estimation and applications. Astronomy and Astrophysics, 84:81–84, 1980.Google Scholar
  3. [Bij91]
    A. Bijaoui. Algorithmes de la transformation en ondelettes. ap-plications en astronomie. In INRIA, editor, Ondelettes et Paquet d’Ondes, pages 115–140, 1991.Google Scholar
  4. [BLMO78]
    A. Bijaoui, G. Lago, J. Marchal, and C. Ounnas. Le traitement au-tomatique des images en astronomie. In INRIA, editor, Traitement des Images et Reconnaissance des Formes, pages 848–854, 1978.Google Scholar
  5. [Bra65]
    R.M. Bracewell. The Fourier transform and its applications, chap-ter 10, page 189. Mac-Graw-Hill New-York, 1965.MATHGoogle Scholar
  6. [GKMM89]
    A. Grossmann, R. Kronland-Martinet, and J. Morlet. Reading and Understanding Continuous Wavelet transform, pages 2–20. Springer Berlin, 1989. in Wavelets: Time-Frequency Methods and Phase-Space, Springer-Verlag, J.M. Combes, A. Grossmann, Ph. Tchamitchian Editors.Google Scholar
  7. [Har63]
    W.W. Harman. Principles of the Statistical Theory of Communi-cation, chapter 11, page 217. Mac-Graw Hill, New York, 1963.Google Scholar
  8. [HKMMT89]
    M. Holdschneider, R. Kronland-Martinet, J. Morlet, and P. Tchamitchian. A Real-Time Algorithm for Signal Analysis with the Help of the Wavelet Transform. In Wavelets: Time-Frequency Methods and Phase-Space, pages 286–297. Springer Berlin, 1989.Google Scholar
  9. [Kru89]
    A. Kruszewski. Inventory-searching, photometric and classifying package. In lSt ESO/ST-ECF Data Analysis. Warsaw University Observatory, April 1989.Google Scholar
  10. [Ma189]
    S. Mallat. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intelligence, 11(7):674–693, 1989.CrossRefMATHGoogle Scholar
  11. [MSB95]
    F. Murtagh, J.L. Starck. and A. Bijaoui. Image restauration with noise suppression using the wavelet transform ii. AA Sup Ser, 112:179–189, 1995.Google Scholar
  12. [P. 94]
    P. Lascaux and R. Théodor. Analyse numérique matricielle ap-pliquée à l’art de l’ingénieur, volume 2, chapter 8, pages 405–458. Masson, 1994.Google Scholar
  13. [RB95]
    F. Rué and A. Bijaoui. A multiscale vision model to analysefield astronomical images. submitted to Experimental Astronomy, September 1995.Google Scholar
  14. [SB94]
    J.L. Starck and A. Bijaoui. Filtering and deconvolution by the wavelet transform. Signal Processing, 35:195--211. 1994.CrossRefMATHGoogle Scholar
  15. [SBLP94]
    J.L. Starck. A. Bijaoui, B. Lopez. and Ch. Perrier. Image reconstruction by the wavelet transform applied to the aperture synthesis. Astronomy and Astrophysics. 283:349–360. 1994.Google Scholar
  16. [SdLB93]
    E. Slezak, V. de Lapparent. and A. Bijaoui. Objective detection ofvoids and high density structures in the first. Ap. J., 409:517–529, 1993.CrossRefGoogle Scholar
  17. [SMB+88]
    E. Slezak, G. Mars, A. Bijaoui, C. Balkowski. and P. Fontanelli.Galaxy counts in the coma supercluster field: automated image detection and classification. Astron. Astrophys. Sup. Ser., 74:83–106, 1988.Google Scholar
  18. [Sto86]
    R.S. Stobie. The COSMOS image analyzer. Pattern Recognition Letters, 4:317–324, 1986.CrossRefGoogle Scholar
  19. [Str89]
    G. Strang. Wavelets and dilation equations: a brief introduction.SIAM Review. 31:614–627, 1989.MathSciNetCrossRefMATHGoogle Scholar
  20. [ÚA92]
    M. Unser and A. Aldroubi. Polynomial splines and wavelets - asignal processing perspective. In Wavelets: a tutorial in theory and applications, pages 91–122. C.K. Chui, Academic Press, New York, 1992.Google Scholar
  21. [Va189]
    F. Valdes. Faint object classification and analysis system standardtest image. In 1st ESO/ST-ECF Data Analysis. IRAF group, Tucson, Arizona, April 1989.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Albert Bijaoui
  • Frédéric Rué
  • Renaud Savalle

There are no affiliations available

Personalised recommendations