Advertisement

The Use of Optimization in the Reconstruction of Obstacles from Acoustic or Electromagnetic Scattering Data

  • Pierluigi Maponi
  • Maria Cristina Recchioni
  • Francesco Zirilli
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 92)

Abstract

We consider some three dimensional time harmonic acoustic and electromagnetic scattering problems for bounded simply connected obstacles. We consider the following inverse problem: from the knowledge of several far field patterns generated by the obstacle when hit by known incoming waves and from the knowledge of some a-priori information about the obstacle, i.e. boundary impedance, shape symmetry, etc., reconstruct the shape or the shape and the impedance of the obstacle. There are a large number of effective numerical methods to solve the direct problem associated with this inverse problem, but techniques to solve the inverse problem are still in their infancy. We reformulate the inverse problem as two different unconstrained optimization problems. We present a review of results obtained by the authors on the inverse problem and we give some ideas concerning the solution of the direct problem by efficient parallel algorithms.

Keywords

Inverse Problem Acoustic Impedance Direct Problem Scattered Field Field Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. M. Morse, K.V. Ingard, Theoretical acoustics, McGraw-Hill, Inc., New York, 1968.Google Scholar
  2. [2]
    A. Sommerfeld, Partial differential equation in physics,Academic Press, New York, 1964.Google Scholar
  3. [3]
    D. Colton, R. Kress, Integral equation methods in scattering theory, J. Wiley & Sons Publ., New York, 1983.Google Scholar
  4. [4]
    D. Colton, R. Kress, Inverse acoustic and electromagnetic scattering theory, Springer-Verlag, Berlin, 1993.Google Scholar
  5. [5]
    J.A. Stratton, Electromagnetic theory, McGraw-Hill Book Company, Inc., New York, 1941.MATHGoogle Scholar
  6. [6]
    J.B. Keller, D. GivoliExact non-reflecting boundary conditions J. of Comput. Phys., 82, 1989, 172–192.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    P.C. WatermanNew formulation of acoustic scattering,J. Acoust. Soc. Amer., 45,1988,1417–1429.CrossRefGoogle Scholar
  8. [8]
    G. Kristensson, P. C. WatermanThe T matrix for acoustic and electromagnetic scattering by circular disks, J. Acoust. Soc. Amer., 72, 1982, 1612–1625.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    B. Peterson, S. Ström, T matrix for electromagneticscatteringfrom an arbitrary number of scatterers and representations of E(3), Phys. Rev. D, 8, 1973, 3661–3678.MathSciNetCrossRefGoogle Scholar
  10. [10]
    Z.L. WANG, L. Hu, W. Ren, Multiple scattering of acoustic waves by a half-space of distributed discrete scatterers with modified T matrix approach, Waves in Random Media, 4, 1994, 369–375.MATHCrossRefGoogle Scholar
  11. [11]
    P.M. Morse, H. Feshbach, Methods of theoretical physics, Part II, McGraw-Hill Book Company, Inc., New York, 1953.Google Scholar
  12. [12]
    D.M. Milder, An improved formalism for wave scattering from rough surfaces, J. Acoust. Soc. Amer., 89, 1991, 529–541.CrossRefGoogle Scholar
  13. [13]
    L. Misici, G. Pacelli, F. Zirilli, A new formalism for wave scattering from a bounded obstacle, to appear in Journal of the Acoustical Society of America.Google Scholar
  14. [14]
    A.N. Tikhonov, On the solution of the incorrectly formulated problems and the regularization method,Soviet. Math. Doldady, 4, 1963, 1035–1038.Google Scholar
  15. [15]
    D. Colton, P. Monk, A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region, SIAM J. Appl. Math., 45, 1985, 1039–1053.MathSciNetMATHGoogle Scholar
  16. [16]
    D. Colton, P. Monk, The numerical solution of the three dimensional inverse scattering problem for time harmonic acoustic waves, SIAM, J. Sci. Stat. Comput., 8, 1987, 278–291.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    F. Aluffi-Pentini, E. Caglioti, L. Misici, F. Zirilli, A parallel algorithm for a three dimensional inverse acoustic scattering problem, in “Parallel Computing: methods, algorithms and applications”, D. J. Evans, C. Sutti Editors, IOP Publishing, Bristol, 1989, 193–200.Google Scholar
  18. [18]
    L. Misici, F. Zirilli, Three dimensional inverse obstacle scattering for time harmonic acoustic waves: a numerical method, SIAM, J. Sci. Stat. Comput., 15, 1994, 1174–1189.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    P. Maponi, L. Misici, F. Zirilli, A new method to reconstruct the boundary conditions of the Helmholtz equation, in “Enviromental acoustics: International conference on theoretical and computational acoustics”, vol. II, D. Lee, M. H. Schultz Editors, World Scientific Publisher Co., Singapore, 1994, 499–508.Google Scholar
  20. [20]
    P. Maponi, L. Misici, F. Zirilli, Three dimensional time harmonic inverse electromagnetic scattering, in “Inverse problems in mathematical physics”, L. Päivärinta, E. Somersalo Editors, Lecture Notes in Physics, Springer-Verlag, Berlin, 422, 1993, 139–147.CrossRefGoogle Scholar
  21. [21]
    P. Maponi, L. Misici, F. Zirilli, An inverse problem for the three dimensional vector Helmholtz equation for a perfectly conducting obstacle, Computers Math. Applic., 22, 1991, 137–146.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    P. Maponi, M.C. Recchioni, F. Zirilli, Three dimensional time harmonic electromagnetic inverse scattering: the reconstrunction of the shape and the impedance of an obstacle, Computers Math. Applic. 31, 1996, 1–7.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    F. Aluffi-Pentini, V. Parisi, F. Zirilli, Algorithm 667 SIGMA - A stochastic integration global minimization algorithm, ACM Transactions on Mathematical Software, 14, 1988, 366–380.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    The IMSL Libraries, IMSL Inc., P.O.Box 4605, Houston-Texas 77210–4605 (USA).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Pierluigi Maponi
    • 1
  • Maria Cristina Recchioni
    • 2
  • Francesco Zirilli
    • 3
  1. 1.Dipartimento di Matematica e FisicaUniversità di CamerinoCamerinoItaly
  2. 2.Istituto di Matematica e StatisticaUniversità di AnconaAnconaItaly
  3. 3.Dipartimento di Matematica “G Castelnuovo”Università di Roma “La Sapienza”RomaItaly

Personalised recommendations