Skip to main content

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 151))

Abstract

Metal bioaccumulation in aquatic organisms has received extensive attention over the last several decades because metal toxicity is directly dependent on metal accumulation. However, a mechanistic understanding of metal bioavailability is limited for most of these studies. The routes and rates of metal uptake are relatively unknown for most metals and most aquatic organisms (Luoma 1989). Because many of these experimental studies use unrealistically high contaminant concentrations and are conducted under relatively simple experimental conditions, they are not applicable to field conditions characterized by temporal and spatial variation and sporadic contaminant input. It is therefore appropriate to develop a new approach to address metal bioavailability by considering all processes responsible for metal accumulation in aquatic organisms and the variations likely to be encountered in the field. Such an approach would also enable realistic predictions of metal concentrations in marine organisms under diverse field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Absil MCP, Kroon JJ, Wolterbeck HT (1994a) Availability of copper from phyto-plankton and water for the bivalve Macoma balthica. I. Separation of uptake pathways using the radiotracer 64Cu. Mar Biol 118:123–127.

    CAS  Google Scholar 

  • Absil MCP, Kroon JJ, Wolterbeck HT (1994b) Availability of copper from phyto-plankton and water for the bivalve Macoma balthica. II. Uptake and elimination from 64Cu-labelled diatom and water. Mar Biol 118:129–135.

    CAS  Google Scholar 

  • Amiard J-C (1978) Modalités de la contamination d’une chaine trophique marine benthique par l’argent 110 m. 4. Influence du mode de contamination sur l’élimination du radionucléide. J Exp Mar Biol Ecol 34:215–225.

    Article  CAS  Google Scholar 

  • Amiard-Triquet C, Berthet B, Metayer C, Amiard J-C (1986) Contribution to the ecotoxicological study of cadmium, lead, copper and zinc in the mussel, Mytilus edulis. II. Experimental study. Mar Biol 92:7–13.

    Article  CAS  Google Scholar 

  • Bayne BL, Hawkins AJS, Navarro E (1987) Feeding and digestion by the mussel Mytilus edulis L. (Bivalvia: Mollusca) in mixtures of silt and algal cells at low concentrations. J Exp Mar Biol Ecol 111:1–22.

    Article  Google Scholar 

  • Bayne BL, Iglesias JIP, Hawkins AJS, Navarro E, Heral M, Deslous-Paoli JM (1993) Feeding behavior of the mussel, Mytilus edulis: responses to variations in quantity and organic content of the seston. J Mar Biol Assoc UK 73:813–829.

    Article  Google Scholar 

  • Bjerregaard P, Topçuoĝlu S, Fisher NS, Fowler SW (1985) Biokinetics of americium and plutonium in the mussel Mytilus edulis. Mar Ecol Prog Ser 21:99–111.

    Article  CAS  Google Scholar 

  • Bjerregaard P, Depledge MH (1994) Cadmium accumulation in Littorina littorea, Mytilus edulis, and Carcinus maenas: the influence of salinity and calcium ion concentrations. Mar Biol 119:385–395.

    Article  CAS  Google Scholar 

  • Boese BL, Lee H, Specht DT, Randall RC, Winsor M (1990) Comparison of aqueous and solid phase uptake for hexachlorobenzene in the tellinid clam, Macoma nasuta (Conrad): a mass balance approach. Environ Toxicol Chem 9:221–231.

    CAS  Google Scholar 

  • Borchardt T (1983) Influence of food quantity on the kinetics of cadmium uptake and loss via food and seawater in Mytilus edulis. Mar Biol 76:67–76.

    Article  CAS  Google Scholar 

  • Borchardt T, Hablizel H, Karbe L, Zeitner R (1988) Trace metal concentrations in mussels: comparison between estuarine, coastal and offshore regions in the southeastern North Sea from 1983–1986. Mar Ecol Prog Ser 42:17–31.

    Article  CAS  Google Scholar 

  • Boyden CR (1974) Trace element content and body size in molluscs. Nature (London) 251:311–314.

    Article  PubMed  CAS  Google Scholar 

  • Bryan GW (1980) Recent trends in research on heavy metal contamination in the sea. Helgol Meeresunters 33:6–25.

    Article  Google Scholar 

  • Bryan GW (1984) Pollution due to heavy metals and their compounds. In: Kinne O (ed) Marine Ecology, Vol. 5. Wiley, Chichester, pp 1289–1430.

    Google Scholar 

  • Campbell PGC, Lewis AG, Chapman PM, Crowder AA, Fletcher WK, Imber B, Luoma SN, Stokes PM, Winfrey M (1988) Biologically available metals in sediments. Pubi 27694. National Research Council of Canada, Ottawa.

    Google Scholar 

  • Campbell PGC (1995) A critique of the free-ion activity model. In: Tessier A, Turner DR (eds) Metal Speciation and Bioavailability in Aquatic Systems. Wiley, Chichester, pp 45–102.

    Google Scholar 

  • Chapman PM, Allen HE, Godtfredsen K, Z’Graggen MN (1996) Evaluation of bioaccumulation factors in regulating metals. Environ Sci Technol 30:448 A–452A.

    Article  CAS  Google Scholar 

  • Clausen I, Riisgård HU (1996) Growth, filtration and respiration in the mussel Mytilus edulis: no evidence for physiological regulation of the filter-pump to nutritional needs. Mar Ecol Prog Ser 141:37–45.

    Article  Google Scholar 

  • Coombs TL, George SG (1978) Mechanisms of immobilization and detoxification of metals in marine organisms. In: McLusky DS, Berry AJ (eds) Physiology and Behavior of Marine Organisms. Pergamon Press, Oxford, pp 179–187.

    Google Scholar 

  • Cossa D, Bourget E, Piuze J (1979) Sexual maturation as a source of variation in the relationship between cadmium concentration and body weight of Mytilus edulis L. Mar Pollut Bull 10:174–176.

    Article  Google Scholar 

  • Dahlgaard H (1986) Effects of season and temperature on long-term in situ loss rates of Pu, Am, Np, Eu, Ce, Ag, Tc, Zn, Co and Mn in a Baltic Mytilus edulis population. Mar Ecol Prog Ser 33:157–165.

    Article  CAS  Google Scholar 

  • Decho AW, Luoma SN (1991) Time-courses in the retention of food material in the bivalves Potamocorbula amurensis and Macoma balthica: significance to the absorption of carbon and chromium. Mar Ecol Prog Ser 78:303–314.

    Article  CAS  Google Scholar 

  • Decho AW, Luoma SN (1994) Humic and fulvic acid: sink or source in the availability of metals to the marine bivalves Macoma balthica and Potamocorbula amurensis? Mar Ecol Prog Ser 108:133–145.

    Article  CAS  Google Scholar 

  • Decho AW, Luoma SN (1996) Flexible digestive strategies and trace metal assimilation in marine bivalves. Limnol Oceanogr 41:568–572.

    Article  CAS  Google Scholar 

  • Depledge MH, Rainbow PS (1990) Models of regulation and accumulation of trace metals in marine invertebrates. Comp Biochem Physiol 97C:l–7.

    Google Scholar 

  • DiToro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR (1991) Technical basis for establishing sediment quality criteria for nonionic organic chemicals using equilibrium partitioning. Environ Toxicol Chem 10:1541–1583.

    Article  CAS  Google Scholar 

  • Fischer H (1983) Shell weight as an independent variation in relation to cadmium content of molluscs. Mar Ecol Prog Ser 12:59–75.

    Article  CAS  Google Scholar 

  • Fischer H (1989) Cadmium in seawater recorded by mussels: regional decline established. Mar Ecol Prog Ser 55:159–169.

    Article  CAS  Google Scholar 

  • Fisher NS, Teyssié JL (1986) Influence of food composition on the biokinetics and tissue distribution of zinc and americium in mussels. Mar Ecol Prog Ser 28:197–207.

    Article  CAS  Google Scholar 

  • Fisher NS, Reinfelder JR (1995) The trophic transfer of metals in marine systems. In: Tessier A, Turner DR (eds) Metal Speciation and Bioavailability in Aquatic Systems. Wiley, Chichester, pp 363–406.

    Google Scholar 

  • Fisher NS, Teyssié J-L, Fowler SW, Wang W-X (1996) The accumulation and retention of metals in mussels from food and water: a comparison under field and laboratory conditions. Environ Sci Technol 30:3232–3242.

    Article  CAS  Google Scholar 

  • Fowler SW, La Rosa J, Heyraud M, Renfro WC (1975) Effect of different radiotracer labelling techniques on radionuclide excretion from marine organisms. Mar Biol 30:297–304.

    Article  Google Scholar 

  • Gagnon C, Fisher NS (1997a) The bioavailability of sediment-bound Cd, Co and Ag to the mussel, Mytilus edulis. Can J Fish Aquat Sci 54:147–156.

    Article  CAS  Google Scholar 

  • Gagnon C, Fisher NS (1997b) Bioavailability of sediment-bound methyl and inorganic mercury to a marine bivalve. Environ Sci Technol 31:993–998.

    Article  CAS  Google Scholar 

  • Goldberg ED, Bowen VT, Farrington JW, Harvey G, Martin JH, Parker PL, Risebrough RW, Robertson W, Schneider E, Gamble E (1978) The mussel watch. Environ Conserv 5:101–125.

    Article  CAS  Google Scholar 

  • Goldberg ED, Koide M, Hodge V, Flegal AR, Martin J (1983) U.S. mussel watch: 1977–1978 results on trace metals and radionuclides. Estuarine Coastal Shelf Sci 16:69–93.

    Article  CAS  Google Scholar 

  • Hamelink JL, Landrum PF, Bergman HL, Benson WH (eds) (1994) Bioavailability: Physical, Chemical, and Biological Interactions. Lewis Publishers, Boca Raton.

    Google Scholar 

  • Harvey RW, Luoma SN (1985) Effects of adherent bacteria and bacterial extracellular polymers upon assimilation by Macoma balthica of sediment-bound Cd, Zn, and Ag. Mar Ecol Prog Ser 22:281–289.

    Article  CAS  Google Scholar 

  • Hutchins DA, Wang W-X, Fisher NS (1995) Copepod grazing and the biogeochemi-cal fate of phytoplankton iron. Limnol Oceanogr 40:989–994.

    Article  CAS  Google Scholar 

  • Landrum PF, Lee H, Lydy MJ (1992) Toxicokinetics in aquatic systems: model comparisons and use in hazard assessment. Environ Toxicol Chem 11:1709–1725.

    Article  CAS  Google Scholar 

  • Langston WJ (1980) Arsenic in UK estuaries, sediments and its availability to ben-thic organisms. J Mar Biol Assoc UK 60:869–881.

    Article  Google Scholar 

  • Langston WJ, Spence SK (1995) Biological factors involved in metal concentrations observed in aquatic organisms. In: Tessier A, Turner DR (eds) Metal Speciation and Bioavailability in Aquatic Systems. Wiley, Chichester, pp 407–478.

    Google Scholar 

  • Luoma SN, Jenne EA (1977) The availability of sediment-bound cobalt, silver, zinc to a deposit-feeding clam. In: Drucher H, Wildung RE (eds) Biological Implications of Metals in the Environment. NTIS, Springfield, VA, pp 213–230.

    Google Scholar 

  • Luoma SN, Bryan GW (1978) Factors controlling the availability of sediment-bound lead to the estuarine bivalve Scrobicularia plana. J Mar Biol Assoc UK 58:793–802.

    Article  CAS  Google Scholar 

  • Luoma SN (1989) Can we determine the biological availability of sediment-bound trace elements? Hydrobiologia 176/177:379–396.

    Article  Google Scholar 

  • Luoma SN, Johns C, Fisher NS, Steinberg NS, Oremland RS, Reinfelder JR (1992) Determination of selenium bioavailability to a benthic bivalve from particulate and solute pathways. Environ Sci Technol 26:485–492.

    Article  CAS  Google Scholar 

  • Luoma SN, Fisher NS (1997) Uncertainties in assessing contaminant exposure from sediments. In: Ingersoll CG, Dillon T, Biddinger GR (eds) Ecological Risk Assessments of Contaminated Sediments. SET AC Spec Pubi Ser. Society of Environmental Toxicology and Chemistry, Pensacola, FL, pp 211–237.

    Google Scholar 

  • Mayzaud P (1986) Digestive enzymes and their relation to nutrition. In: Corner EDS, O’Hara SCM (eds) The Biological Chemistry of Marine Copepods. Clarendon Press, Oxford, pp 165–225.

    Google Scholar 

  • Nieboer E, Jusys AA (1988) Biological chemistry of chromium. In: Nriagu JO, Nieboer E (eds) Chromium in the Natural and Human Environments. Wiley, New York, pp 21–79.

    Google Scholar 

  • O’Connor TP (1992) Recent trends in coastal environmental quality: results from the first five years of the NOAA mussel watch project. US Dept of Commerce, NOAA, National Ocean Service, Washington, DC.

    Google Scholar 

  • O’Connor TP (1996) Trends in chemical concentrations in mussels and oysters collected along the US coast from 1986 to 1993. Mar Environ Res 41:183–201.

    Article  CAS  Google Scholar 

  • Pentreath RJ (1973) The accumulation from water of 65Zn, 54Mn, 58Co and 59Fe by the mussel, Mytilus edulis. J Mar Biol Assoc UK 53:127–143.

    Article  CAS  Google Scholar 

  • Phillips DJH (1980) Quantitative Aquatic Biological Indicators: Their Use to Monitor Trace Metal and Organochlorine Pollution. Applied Science, London.

    Google Scholar 

  • Phillips DJH, Rainbow PS (1988) Barnacles and mussels as biomonitors of trace elements: a comparative study. Mar Ecol Prog Ser 49:83–93.

    Article  CAS  Google Scholar 

  • Rainbow PS (1990) Heavy metal levels in marine environment. In: Furness RW, Rainbow PS (eds) Heavy Metals in the Marine Environments. CRC Press, Boca Raton, pp 68–79.

    Google Scholar 

  • Regoli F, Orlando E (1994) Accumulation and subcellular distribution of metals (Cd, Fe, Mn, Pb, and Zn) in the Mediterranean mussel Mytilus galloprovincialis during a field transplant experiment. Mar Pollut Bull 28:592–600.

    Article  CAS  Google Scholar 

  • Reinfelder JR, Fisher NS (1991) The assimilation of elements ingested by marine copepods. Science 251:794–796.

    Article  PubMed  CAS  Google Scholar 

  • Reinfelder JR, Fisher NS (1994) The assimilation of elements ingested by marine planktonic bivalve larvae. Limnol Oceanogr 39:12–20.

    Article  CAS  Google Scholar 

  • Reinfelder JR, Wang W-X, Luoma SN, Fisher NS (1997) Assimilation efficiencies and turnover rates of trace elements in marine bivalves: a comparison of oysters, clams, and mussels. Mar Biol in press.

    Google Scholar 

  • Shumway SE, Cucci TL, Newell RC, Yentsch CM (1985) Particle selection, ingestion and absorption in filter-feeding bivalves. J Exp Mar Biol Ecol 91:77–92.

    Article  Google Scholar 

  • Simkiss K, Taylor MG (1989) Metal fluxes across the membranes of aquatic organisms. Rev Aquat Sci 1:173–188.

    CAS  Google Scholar 

  • Sung W (1995) Some observations on surface partitioning of Cd, Cu, and Zn in estuaries. Environ Sci Technol 29:1303–1312.

    Article  PubMed  CAS  Google Scholar 

  • Tessier A, Campbell PGC, Auclair JC, Bisson M (1984) Relationship between the partitioning of trace metals in sediments and their accumulation in the tissues of the freshwater mollusc Elliptio complanata in a mining area. Can J Fish Aquat Sci 41:1463–1472.

    Article  CAS  Google Scholar 

  • Tessier A, Turner DR (eds) (1995) Metal Speciation and Bioavailability in Aquatic Systems. Wiley, Chichester.

    Google Scholar 

  • Thomann RV, Mahony JD, Mueller R (1995) Steady-state model of biota sediment accumulation factor for metals in two marine bivalves. Environ Toxicol Chem 14:1989–1998.

    Article  CAS  Google Scholar 

  • Wang W-X, Fisher NS, Luoma SN (1995) Assimilation of trace elements ingested by the mussel, Mytilus edulis: effects of algal food abundance. Mar Ecol Prog Ser 129:165–176.

    Article  CAS  Google Scholar 

  • Wang W-X, Fisher NS (1996a) Assimilation of trace elements and carbon by the mussel Mytilus edulis: effects of food composition. Limnol Oceanogr 41:197–207.

    Article  CAS  Google Scholar 

  • Wang W-X, Fisher NS (1996b) Assimilation of trace elements by the mussel, Mytilus edulis: effects of diatom chemical composition. Mar Biol 125:715–724.

    Article  CAS  Google Scholar 

  • Wang W-X, Fisher NS, Luoma SN (1996) Kinetic determinations of trace elements bioaccumulation in the mussels Mytilus edulis. Mar Ecol Prog Ser 140:91–113.

    Article  CAS  Google Scholar 

  • Wang W-X, Griscom SB, Fisher NS (1997) Bioavailability of Cr(III) and Cr(VI) to marine mussels from solute and particulate pathways. Environ Sci Technol 31:603–611.

    Article  CAS  Google Scholar 

  • Ward JE, MacDonald BA, Thompson RJ, Benninger PG (1993) Mechanisms of suspension feeding in bivalves: resolution of current controversies by means of endoscopy. Limnol Oceanogr 38:265–272.

    Article  Google Scholar 

  • Widdows J, Donkin P, Brinsley MD, Evans SV, Salked PN, Franklin A, Law RJ, Waldock MJ (1995) Scope for growth and contaminant levels in North Sea mussels Myiilus edulis. Mar Ecol Prog Ser 127:131–148.

    Article  CAS  Google Scholar 

  • Williams RJP (1981) Physical-chemical aspects of inorganic element transfer through membranes. Philos Trans R Soc London B (Biol Sci) 294:57–74.

    Article  CAS  Google Scholar 

  • Wood TM, Baptista AM, Kuwabara JS, Flegal AR (1995) Diagnostic modeling of trace metal partitioning in south San Francisco Bay. Limnol Oceanogr 40:345–358.

    Article  CAS  Google Scholar 

  • Zhang GH, Hu MH, Huang YP, Harrison PJ (1990) Se uptake and accumulation in marine phytoplankton and transfer of Se to the clam Puditapes philippnarum. Mar Environ Res 30:179–190.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, WX., Fisher, N.S. (1997). Modeling Metal Bioavailability for Marine Mussels. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 151. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1958-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1958-3_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7355-4

  • Online ISBN: 978-1-4612-1958-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics