Skip to main content

Part of the book series: Partially Ordered Systems ((PARTIAL.ORDERED))

  • 198 Accesses

Abstract

Nuclear magnetic interactions are time-dependent since they are modulated by changes in the position and/or the orientation of a molecule. These molecular motions depend on the intermolecular, and to some extent, intramolecular forces. Molecular forces are largely governed by electrostatic intermolecular potentials. Therefore, information concerning intermolecular forces and dynamics may be obtained through studying the timedependent characteristics of the nuclear spin. Molecular dynamics is a very complicated process even in normal liquids. In liquid crystals, where the molecules and the medium are highly anisotropic, the dynamic processes become extremely difficult to investigate. However, it is possible to treat the position or the orientation of a rigid molecule as a random variable and describe the dynamics of molecular motion by a stochastic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.H. Glarum and J.H. Marshall, J. Chem. Phys. 44, 2884 (1966); 46, 55 (1967).

    Article  ADS  Google Scholar 

  2. G.R. Luckhurst and A. Sanson, Mol. Phys. 24, 1297 (1972).

    Article  ADS  Google Scholar 

  3. P.L. Nordio and P. Busolin, J. Chem. Phys. 55, 5485 (1971).

    Article  ADS  Google Scholar 

  4. P.L. Nordio, G. Rigatti, and U. Segre, J. Chem. Phys. 56, 2117 (1972); Mol. Phys. 25, 129 (1973).

    Article  ADS  Google Scholar 

  5. J.M. Bernassau, E.P. Black, and D.M. Grant, J. Chem. Phys. 76, 253 (1982).

    Article  ADS  Google Scholar 

  6. J. Bulthuis and L. Plomp, J. Phys. Prance 51, 2581 (1990).

    Article  Google Scholar 

  7. R. Tarroni and C. Zannoni, J. Chem. Phys. 95, 4550 (1991).

    Article  ADS  Google Scholar 

  8. E. Berggren, R. Tarroni, and C. Zannoni, J. Chem. Phys. 99, 6180 (1993).

    Article  ADS  Google Scholar 

  9. E. Berggren and C. Zannoni, Mol. Phys. 85, 299 (1995).

    Article  ADS  Google Scholar 

  10. C.C. Wang and R. Pecora, J. Chem. Phys. 72, 5333 (1980).

    Article  ADS  Google Scholar 

  11. L.S. Selwyn, R.L. Vold, and R.R. Vold, J. Chem. Phys. 80, 5418 (1984).

    Article  ADS  Google Scholar 

  12. R.Y. Dong and K.R. Sridharan, J. Chem. Phys. 82, 4838 (1985).

    Article  ADS  Google Scholar 

  13. C.F. Polnaszek, G.V. Bruno, and J.H. Freed, J. Chem. Phys. 58, 3185 (1973).

    Article  ADS  Google Scholar 

  14. C.F. Polnaszek and J.H. Freed, J. Phys. Chem. 79, 2283 (1975).

    Article  Google Scholar 

  15. R.R. Vold and R.L. Vold, J. Chem. Phys. 88, 1443 (1988).

    Article  ADS  Google Scholar 

  16. G. Cvikl, U. Dahlborg, M. Cepic, J. Peternelj, I. Jencic, B. Glumac, and M. Davidovic, Phys. Scr. 44, 63 (1991).

    Article  ADS  Google Scholar 

  17. P.L. Nordio, The Molecular Physics of Liquid Crystals, edited by G.R. Luckhurst and G.W. Gray (Academic, London, 1979), Chap. 18.

    Google Scholar 

  18. J.B. Petersen, Electron Spin Relaxation in Liquids, edited by L.T. Muus and P.W. Atkins (Plenum, New York, 1972).

    Google Scholar 

  19. J.H. Freed, J. Chem. Phys. 66, 4183 (1977).

    Article  ADS  Google Scholar 

  20. P.A. Beckmann, J.W. Emsley, G.R. Luckhurst, and D.L. Turner, Mol. Phys. 50, 699 (1983).

    Article  ADS  Google Scholar 

  21. A. Abragam, Principles of Nuclear Magnetic Resonance (Oxford University, New York, 1961).

    Google Scholar 

  22. G. Agostini, P.L. Nordio, G. Rigatti, and U. Segre, Atti. Accad. Naz. Lincei Sez. 2a 13, 1 (1975).

    Google Scholar 

  23. P.L. Nordio and U. Segre, J. Magn. Reson. 27, 465 (1977).

    Google Scholar 

  24. D.E. Woessner, J. Chem. Phys. 36, 1 (1962); W.T. Huntress, Jr., Adv. Magn. Reson. 4, 1 (1970).

    Article  ADS  Google Scholar 

  25. C. Zannoni, Mol. Phys. 38, 1813 (1979); 42, 1303 (1981).

    Article  ADS  Google Scholar 

  26. C. Zannoni, A. Arcioni, and P. Cavatorta, Chem. Phys. Lipids 32, 179 (1983).

    Article  Google Scholar 

  27. P. Pershan, The Molecular Physics of Liquid Crystals, edited by G.R. Luckhurst and G.W. Gray (Academic, London, 1979), Chap. 17.

    Google Scholar 

  28. K. Miyano, J. Chem. Phys. 69, 4807 (1978); J.G.P. Dalmolen and W.H. de Jeu, ibid. 78, 7353 (1983).

    Article  ADS  Google Scholar 

  29. I. Dozov, N. Kirov, and M.P. Fontana, J. Chem. Phys. 81, 2585 (1984); N. Kirov, I. Dozov, and M.P. Fontana, ibid. 83, 5267 (1985).

    Article  ADS  Google Scholar 

  30. R.Y. Dong, J. Chem. Phys. 88, 3962 (1988).

    Article  ADS  Google Scholar 

  31. P.A. Beckmann, J.W. Emsley, G.R. Luckhurst, and D.L. Turner, Mol. Phys. 59, 97 (1986).

    Article  ADS  Google Scholar 

  32. R.Y. Dong, Mol. Cryst. Liq. Cryst. 141, 349 (1986).

    Article  Google Scholar 

  33. P.L. Nordio and U. Segre, Chem. Phys. 11, 57 (1975).

    Article  ADS  Google Scholar 

  34. I. Dozov, N. Kirov, and B. Petroff, Phys. Rev. A 36, 2870 (1987).

    Article  ADS  Google Scholar 

  35. S. Huo and R.R. Vold, J. Phys. Chem. 99, 12391 (1995).

    Article  Google Scholar 

  36. R.Y. Dong and X. Shen, J. Chem. Phys. 105, 2106 (1996).

    Article  ADS  Google Scholar 

  37. R.Y. Dong, J. Phys. Chem. 100, 15663 (1996).

    Article  Google Scholar 

  38. R.Y. Dong, Liq. Cryst. 16, 1101 (1994). Equations (4) and (5) contained errors.

    Article  Google Scholar 

  39. X. Shen and R.Y. Dong, Mol Phys. 83, 1117 (1994).

    Article  ADS  Google Scholar 

  40. B. Cvikl and U. Dahlborg, Phys. Scr. 49, 627 (1994).

    Article  ADS  Google Scholar 

  41. S.J. Opella and M.H. Frey, J. Am. Chem. Soc. 101, 5856 (1979).

    Article  Google Scholar 

  42. R.J. Wittebort, R. Subramanian, N.P. Kulshreshtha, and D.B. Dupre, J. Chem. Phys. 83, 2457 (1985).

    Article  ADS  Google Scholar 

  43. M.P. Warchol and W.E. Vaughan, Adv. Mol. Relax. Process 13, 317 (1978).

    Article  Google Scholar 

  44. A.N. Kutzentzov, J. Struct. Chem. 11, 488 (1970).

    Article  Google Scholar 

  45. R.Y. Dong, Phys. Rev. A 42, 858 (1990).

    Article  ADS  Google Scholar 

  46. G.L. Hoatson, T.Y. Tse, and R.L. Vold, J. Magn. Reson. 98, 342 (1992).

    Google Scholar 

  47. J.M. Goetz, G.L. Hoatson, and R.L. Vold, J. Chem. Phys. 97, 1306 (1992).

    Article  ADS  Google Scholar 

  48. R. Blinc, J. Dolinsek, M. Luzar, and J. Selinger, Liq. Cryst. 3, 663 (1988).

    Article  Google Scholar 

  49. R.E. London and J. Avitabile, J. Am. Chem. Soc. 100, 7159 (1978).

    Article  Google Scholar 

  50. R.J. Wittebort and A. Szabo, J. Chem. Phys. 69, 1722 (1978).

    Article  ADS  Google Scholar 

  51. R.Y. Dong, Bull. Magn. Reson. 9, 29 (1987).

    Google Scholar 

  52. C.G. Wade, Annu. Rev. Phys. Chem. 28, 47 (1977); R.Y. Dong, Isr. J. Chem. 23, 370 (1983).

    Article  ADS  Google Scholar 

  53. D. Goldfarb, R.Y. Dong, Z. Luz, and H. Zimmermann, Mol. Phys. 54, 1185 (1985).

    Article  ADS  Google Scholar 

  54. R.Y. Dong, Liq. Cryst. 4, 505 (1989).

    Article  Google Scholar 

  55. D. Goldfarb, Z. Luz, and H. Zimmermann, J. Phys. France 42, 1303 (1981).

    Article  Google Scholar 

  56. R.Y. Dong and G.M. Richards, Mol. Cryst. Liq. Cryst. 141, 335 (1986).

    Article  Google Scholar 

  57. R.Y. Dong, J.W. Emsley, and K. Hamilton, Liq. Cryst. 5,1019 (1989).

    Article  Google Scholar 

  58. R.Y. Dong and G.M. Richards, J. Chem. Soc. Faraday Trans. 2 84, 1053 (1988).

    Google Scholar 

  59. R.Y. Dong and G.M. Richards, J. Chem. Soc. Faraday Trans. 88, 1885 (1992).

    Google Scholar 

  60. G.M. Richards and R.Y. Dong, Liq. Cryst. 5, 1011 (1989).

    Article  Google Scholar 

  61. R.Y. Dong and G.M. Richards, Mol. Cryst. Liq. Cryst. 262, 339 (1995).

    Article  Google Scholar 

  62. B.R. Ratna and R. Shashidhar, Mol. Cryst. Liq. Cryst. 42, 185 (1977); M. Davies, R. Moutran, A.H. Price, M.S. Beevers, and G. Williams, J. Chem. Soc. Faraday Trans. 2 72, 1447 (1976).

    Article  Google Scholar 

  63. M. Ricco and M.P. Fontana, Phase Transitions in Liquid Crystals, edited by S. Martellucci (Plenum, New York, 1991).

    Google Scholar 

  64. R.Y. Dong, Mol. Phys. 88, 979 (1996).

    Article  ADS  Google Scholar 

  65. A. Arcioni, F. Bertinelli, R. Tarroni, and C. Zannoni, Chem. Phys. 143, 259 (1990).

    Article  ADS  Google Scholar 

  66. A. Arcioni, R. Tarroni, and C. Zannoni, Nuovo Cimento D 10, 1409 (1989); Liq. Cryst. 6, 63 (1989).

    Article  ADS  Google Scholar 

  67. R.Y. Dong, L. Friesen, and G.M. Richards, Mol. Phys. 81, 1017 (1994).

    Google Scholar 

  68. R.Y. Dong and X. Shen, Phys. Rev. E 49, 538 (1994).

    Article  ADS  Google Scholar 

  69. L.P. Hwang and J.H. Freed, J. Chem. Phys. 63, 118 (1975).

    Article  MathSciNet  ADS  Google Scholar 

  70. J.S. Hwang, K.V.S. Rao, and J.H. Freed, J. Phys. Chem. 80, 1490 (1976).

    Article  Google Scholar 

  71. J. Struppe and F. Noack, Liq. Cryst. 20, 595 (1996).

    Article  Google Scholar 

  72. G. Moro and P.L. Nordio, J. Phys. Chem. 89, 997 (1985).

    Article  Google Scholar 

  73. G.J. Krüger, Phys. Rep. 82, 229 (1982).

    Article  ADS  Google Scholar 

  74. G.J. Krüger and H. Spiesecke, Z. Naturforsch. 289, 964 (1973); M.E. Moseley and A. Lowenstein, Mol. Cryst. Liq. Cryst. 90, 117 (1982); 95, 51 (1983).

    Google Scholar 

  75. P. Ukleja and J.W. Doane, Ordering in Two Dimensions, edited by S.K. Sinha (Elsevier North-Holland, Amsterdam, 1980), p. 427.

    Google Scholar 

  76. K.-S. Chu and D. S. Moroi, J. Phys. (Paris) Colloq. 36, C1–99 (1975).

    Article  Google Scholar 

  77. A.J. Leadbetter, F.P. Temme, A. Heidemann, and W.S. Howells, Chem. Phys. Lett. 34, 363 (1975).

    Article  ADS  Google Scholar 

  78. F. Rondelez, Solid State Commun. 14, 815 (1974).

    Article  ADS  Google Scholar 

  79. R. Blinc, J. Pirš, and I. Zupančič, Phys. Rev. Lett. 30, 546 (1973).

    Article  ADS  Google Scholar 

  80. I. Zupančič, J. Pirš, M. Luzar, R. Blinc, and J.W. Doane, Solid State Commun. 15, 227 (1974).

    Article  ADS  Google Scholar 

  81. F. Noack, Mol. Cryst. Liq. Cryst. 113, 247 (1984).

    Article  Google Scholar 

  82. F. Noack, St. Becker, and J. Struppe, in Annual Reports on NMR Spectroscopy, edited by G.A. Webb (Academic, London, in press).

    Google Scholar 

  83. J. Mager, Thesis, Stuttgart (1993).

    Google Scholar 

  84. R.Y. Dong, D. Goldfarb, M.E. Moseley, Z. Luz, and H. Zimmermann, J. Phys. Chem. 88, 3148 (1984).

    Article  Google Scholar 

  85. D. Sandström, H. Zimmermann, and A. Maliniak, J. Phys. Chem. 98, 8154 (1994).

    Article  Google Scholar 

  86. H.C. Torrey, Phys. Rev. 92, 962 (1953); 96, 690 (1954).

    Article  ADS  MATH  Google Scholar 

  87. H.A. Resing and H.C. Torrey, Phys. Rev. 131, 1102 (1963).

    Article  ADS  Google Scholar 

  88. G.J. Krüger, Z. Naturforsch. Teil A 24, 560 (1969).

    ADS  Google Scholar 

  89. G.J. Krüger, H. Spiesecke, R. Van Steenwinkel, and F. Noack, Mol. Cryst. Liq. Cryst. 40, 103 (1977).

    Article  Google Scholar 

  90. W. Wölfel, F. Noack, and M. Stohrer, Z. Naturforsch Teil A 30, 437 (1975).

    Google Scholar 

  91. R. Blinc, M. Vilfan, M. Luzar, J. Seliger, and V. Žagar, J. Chem. Phys. 68, 303 (1978).

    Article  ADS  Google Scholar 

  92. F. Noack, Progr. NMR Spectrosc. 18, 171 (1986).

    Article  Google Scholar 

  93. E. T. Samulski, C.R. Dybowski, and C.G. Wade, Phys. Rev. Lett. 29, 340, 1050 (1972).

    Article  ADS  Google Scholar 

  94. B.M. Fung, C.G. Wade, and R.D. Orwoll, J. Chem. Phys. 64, 148 (1976).

    Article  ADS  Google Scholar 

  95. J.S. Lewis, E. Tomchuk, and E. Bock, Mol. Cryst. Liq. Cryst. 97, 387 (1983).

    Article  Google Scholar 

  96. J.F. Harmon and B.H. Muller, Phys. Rev. 182, 400 (1969).

    Article  ADS  Google Scholar 

  97. S. Žumer and M. Vilfan, Phys. Rev. A 17, 424 (1978).

    Article  ADS  Google Scholar 

  98. M. Vilfan and S. Žumer, Phys. Rev. A 21, 672 (1980).

    Article  ADS  Google Scholar 

  99. S. Žumer and M. Vilfan, Phys. Rev. A 28, 3070 (1983).

    Article  ADS  Google Scholar 

  100. K.H. Schweikert and F. Noack, Z. Naturforsch. Teil A 44, 597 (1989).

    Google Scholar 

  101. P.J. Sebastião, A.C. Ribeiro, H.T. Nguyen, and F. Noack, J. Phys. II France 5, 1707 (1995).

    Google Scholar 

  102. C. Cruz, J.L. Figueirinhas, P.J. Sebastião, A.C. Ribeiro, F. Noack, H.T. Nguyen, B. Heinrich, and D. Guillon, Z. Naturforsch. Teil A 51, 155 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dong, R.Y. (1997). Rotational and Translational Dynamics. In: Nuclear Magnetic Resonance of Liquid Crystals. Partially Ordered Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1954-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1954-5_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7354-7

  • Online ISBN: 978-1-4612-1954-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics