Skip to main content

Part of the book series: Partially Ordered Systems ((PARTIAL.ORDERED))

  • 198 Accesses

Abstract

The description of nuclear spin systems in liquid crystals under the influence of radiofrequency pulses requires a quantum mechanical formalism that specifies the state of a spin system by a state function or by a density operator. The density matrix formalism (Section 2.1) is introduced in this chapter. The full Hamiltonian H of a molecular system is usually complex. Fortunately, magnetic resonance experiments can be described by a more simplified spin Hamiltonian. The nuclear spin Hamiltonian acts only on the spin variables and is obtained by averaging the full Hamiltonian over the lattice coordinates. The lattice is defined as all degrees of freedom excluding those of a spin system. Various terms (e.g., chemical shift, dipoledipole interaction) in the spin Hamiltonian are summarized in Section 2.2. In contrast to solids, intermolecular interactions are normally averaged to zero in liquid crystals due to rapid translational and rotational diffusion of molecules in liquid crystalline phases. Furthermore, partial motional averaging of the NMR spectrum should be considered for the liquid crystalline molecules or for the solute molecules dissolved in liquid crystals. The partial averaging of the spin Hamiltonian is a result of anisotropic molecular tumbling motions. This is addressed in Section 2.3. Although the density matrix formalism is a general method, it is particularly suitable for systems in which the lattice may be described classically and in which motional narrowing [2.1]occurs. It is useful for describing pulsed NMR, which is a tool for studying liquid crystals. Deuterium NMR is used to illustrate various pulsed NMR techniques in Section 2.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.P. Slichter, Principles of Magnetic Resonance, 3rd ed. (Springer, New York, 1990).

    Google Scholar 

  2. M. Goldman, Quantum Description of High-Resolution NMR in Liq uids (Clarendon, Oxford, 1988).

    Google Scholar 

  3. J.D. Memory, Quantum Theory of Magnetic Resonance Parameters (McGraw-Hill, New York, 1968).

    Google Scholar 

  4. A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961).

    Google Scholar 

  5. U. Haeberlen, High Resolution NMR in Solids: Selective Average (Academic, New York, 1976).

    Google Scholar 

  6. M. Mehring, Principles of High Resolution NMR in Solids, 2nd ed. (Springer, Berlin, 1983).

    Book  Google Scholar 

  7. H.W. Spiess, NMR Basic Principles Prog. 15, 55 (1978).

    Google Scholar 

  8. M.E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957); D.M. Brink and G. R. Satchler, Angular Momentum (Clarendon, Oxford, 1962).

    MATH  Google Scholar 

  9. A.R. Edmonds, Angular Momentum in Quantum Mechanics (Prince ton University, Princeton, NJ, 1957).

    MATH  Google Scholar 

  10. C. Zannoni, The Molecular Physics of Liquid Crystals, edited by G.R. Luckhurst and G.W. Gray (Academic, New York, 1979), Chap. 3.

    Google Scholar 

  11. M. Luzar, V. Rutar, J. Seliger, and R. Blinc, Ferroelectrics 58, 115 (1984).

    Article  Google Scholar 

  12. A. Pines and J.J. Chang, J. Am. Chem. Soc. 96, 5590 (1974); Phys. Rev. A 10, 946 (1974).

    Article  Google Scholar 

  13. M. Bloom, J.H. Davis, and M.I. Valic, Can. J. Phys. 58, 1510 (1980).

    Article  ADS  Google Scholar 

  14. R.R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon, Oxford, 1987).

    Google Scholar 

  15. A.J. Vega and Z. Luz, J. Chem. Phys. 86, 1803 (1987).

    Article  ADS  Google Scholar 

  16. S. Vega and A. Pines, J. Chem. Phys. 66, 5624 (1977); M. Mehring, E.K. Wolff, and M.E. Stoll, J. Magn. Reson. 37, 475 (1980).

    Article  ADS  Google Scholar 

  17. K.R. Jeffrey, Bull. Magn. Reson. 3, 69 (1981).

    Google Scholar 

  18. J.H. Davis, K.R. Jeffrey, M. Bloom, M.I. Valic, and T.P. Higgs, Chem. Phys. Lett. 42, 390 (1976).

    Article  ADS  Google Scholar 

  19. J. Jeener and P. Broekaert, Phys. Rev. 157, 232 (1967).

    Article  ADS  Google Scholar 

  20. H.W. Spiess, J. Chem. Phys. 72, 6755 (1980).

    Article  ADS  Google Scholar 

  21. R.R. Vold and R.L. Vold, in Advances in Magnetic and Optical Res onance, edited by W.S. Warren (Academic, San Diego, 1991).

    Google Scholar 

  22. R.L. Vold, W.H. Dickerson, and R.R. Vold, J. Magn. Reson. 43, 213 (1981).

    Google Scholar 

  23. P.A. Beckmann, J.W. Emsley, G.R. Luckhurst, and D.L. Turner, Mol. Phys. 50, 699 (1983).

    Article  ADS  Google Scholar 

  24. S. Wimperis, J. Magn. Reson. 86, 46 (1990).

    Google Scholar 

  25. S. Wimperis, J. Magn. Reson. 83, 509 (1989); S. Wimperis and G. Bodenhausen, Chem. Phys. Lett. 132, 194 (1986).

    Google Scholar 

  26. G.L. Hoatson, J. Magn. Reson. 94, 152 (1991).

    Google Scholar 

  27. R.Y. Dong, Bull. Magn. Reson. 14, 134 (1992).

    Google Scholar 

  28. C. Forte, M. Geppi, and C.A. Veracini, Z. Naturforsch. Teil A 49, 311 (1994).

    Google Scholar 

  29. H.Y. Carr and E.M. Purcell, Phys. Rev. 94, 630 (1954).

    Article  ADS  Google Scholar 

  30. S.B. Ahmad, K.J. Packer, and J.M. Ramsden, Mol. Phys. 33, 857 (1977).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dong, R.Y. (1997). Dynamics of Nuclear Spins. In: Nuclear Magnetic Resonance of Liquid Crystals. Partially Ordered Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1954-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1954-5_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7354-7

  • Online ISBN: 978-1-4612-1954-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics