Advertisement

Central Limit Theorems

  • Yuan Shih Chow
  • Henry Teicher
Chapter
  • 1.7k Downloads
Part of the Springer Texts in Statistics book series (STS)

Abstract

Central limit theorems have played a paramount role in probability theory starting—in the case of independent random variables—with the DeMoivreLaplace version and culminating with that of Lindeberg-Feller. The term “central” refers to the pervasive, although nonunique, role of the normal distribution as a limit of d.f.s of normalized sums of (classically independent) random variables. Central limit theorems also govern various classes of dependent random variables and the cases of martingales and interchangeable random variables will be considered.

Keywords

Central Limit Theorem Independent Component Independent Random Variable Asymptotic Normality Double Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Anscombe, “ Large sample theory of sequential estimation,”Proc. Cambr. Philos. Soc. 48 (1952) 600–607.MathSciNetzbMATHCrossRefGoogle Scholar
  2. S. Bernstein, “ Several comments concerning the limit theorem of Liapounov,”Dokl. Akad. Nauk. SSSR24 (1939), 3–7.Google Scholar
  3. A. C. Berry, “ The accuracy of the Gaussian approximation to the sum of independent variates,”Trans. Amer. Math. Soc.49 (1941), 122–136.MathSciNetCrossRefGoogle Scholar
  4. J. Blum, D. Hanson, and J. Rosenblatt, “On the CLT for the sum of a random number of random variables,”Z. Wahr. Verw. Geb.1 (1962–1963), 389–393.MathSciNetzbMATHCrossRefGoogle Scholar
  5. J. Blum, H. Chernoff, M. Rosenblatt, and H. Teicher, “Central limit theorems for interchangeable processes,”Can. Jour. Math.10 (1958), 222–229.MathSciNetzbMATHCrossRefGoogle Scholar
  6. K. L. ChungA Course in Probability TheoryHarcourt Brace, New York, 1968; 2nd ed., Academic Press, New York, 1974.Google Scholar
  7. W. Doeblin, “ Sur deux problèmes de M. Kolmogorov concernant les chaînes denombrables,”Bull Soc. Math. France66 (1938), 210–220.MathSciNetGoogle Scholar
  8. J. L. DoobStochastic ProcessesWiley, New York, 1953.zbMATHGoogle Scholar
  9. A. Dvoretzky, “Asymptotic normality for sums of dependent random variables,”Proc. Sixth Berkeley Symp. on Stat. and Prob.1970, 513–535.Google Scholar
  10. P. Erdos and M. Kac, “On certain limit theorems of the theory of probability,”Bull. Amer. Math. Soc.52 (1946), 292–302.MathSciNetCrossRefGoogle Scholar
  11. C. Esseen, “Fourier analysis of distribution functions,”Acta Math.77 (1945), 1–125.MathSciNetzbMATHCrossRefGoogle Scholar
  12. W. Feller, “ Über den Zentralen Grenzwertsatz der ahrscheinlichkeitsrechnung,” MathZeit.40 (1935), 521–559.MathSciNetCrossRefGoogle Scholar
  13. N. Friedman, M. Katz, and L. Koopmans, “Convergence rates for the central limit theorem,”Proc. Nat. Acad. Sci.56 (1966), 1062–1065.MathSciNetzbMATHCrossRefGoogle Scholar
  14. P. Hall and C. C. HeydeMartingale Limit Theory and its ApplicationAcademic Press, New York, 1980.zbMATHGoogle Scholar
  15. K. KnoppTheory and Application of Infinite SeriesStechert-Hafner, New York, 1928.Google Scholar
  16. P. LévyThéorie de l’addition des variables aléatoiriesGauthier-Villars, Paris, 1937; 2nd ed., 1954.Google Scholar
  17. J. Lindeberg, “Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung,”Math. Zeit.15 (1922), 211–225.MathSciNetzbMATHCrossRefGoogle Scholar
  18. D. L. McLeish, “Dependent Central Limit Theorems and invariance principles,”Ann. Prob.2 (1974), 620–628.MathSciNetzbMATHCrossRefGoogle Scholar
  19. J. Mogyorodi, “A CLT for the sum of a random number of independent random variables,”Magyor. Tud. Akad. Mat. Kutato Int. Közl.7 (1962), 409–424.MathSciNetzbMATHGoogle Scholar
  20. A. Renyi, “Three new proofs and a generalization of a theorem of Irving Weiss,”Magyor. Tud. Akad. Mat. Kutato Int. Közl.7 (1962), 203–214.MathSciNetzbMATHGoogle Scholar
  21. A. Renyi, “On the CLT for the sum of a random number of independent random variablesActa Math. Acad. Sci. Hung.11 (1960), 97–102.MathSciNetzbMATHCrossRefGoogle Scholar
  22. B. Rosen, “On the asymptotic distribution of sums of independent, identically distributed random variables,”Arkiv for Mat.4 (1962), 323–332.zbMATHCrossRefGoogle Scholar
  23. D. Siegmund, “On the asymptotic normality of one-sided stopping rules,”Ann. Math. Stat.39 (1968), 1493–1497.MathSciNetzbMATHCrossRefGoogle Scholar
  24. H. Teicher, “On interchangeable random variables,”Studi di Probabilita Statistica e Ricerca Operativa in Onore di Giuseppe Pompiljpp. 141–148, Gubbio, 1971.Google Scholar
  25. H. Teicher, “A classical limit theorem without invariance or reflectionAnn. Math. Stat.43 (1973), 702–704.MathSciNetGoogle Scholar
  26. P. Van Beek, “An application of the Fourier method to the problem of sharpening the Berry-Esseen inequality,”Z. Wahr.23 (1972), 187–197.zbMATHCrossRefGoogle Scholar
  27. I. Weiss, “Limit distributions in some occupancy problems,”Ann. Math. Stat.29 (1958), 878–884.zbMATHCrossRefGoogle Scholar
  28. V. Zolotarev, “An absolute estimate of the remainder term in the C.L.T.,”Theor. Prob. and its Appl.11 (1966), 95–105.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Yuan Shih Chow
    • 1
  • Henry Teicher
    • 2
  1. 1.Department of StatisticsColumbia UniversityNew YorkUSA
  2. 2.Department of StatisticsRutgers UniversityNew BrunswickUSA

Personalised recommendations