Distribution Functions and Characteristic Functions

  • Yuan Shih Chow
  • Henry Teicher
Part of the Springer Texts in Statistics book series (STS)


Distribution functions are mathematical artifacts with properties that are independent of any probabilistic setting. Notwithstanding, most of the theorems of interest are geared to d.f.s of r.v.s and the majority of proofs are simpler and more intuitive when couched in terms of r.v.s having, or probability measures determined by, the given d.f.s. Since r.v.s possessing preassigned d.f.s can always be defined on some probability space, the language of r.v.s and probability will be utilized in many of the proofs without further ado.


Characteristic Function Probability Space Inversion Formula Nondecreasing Function Borel Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. H. E. Bray, “Elementary properties of the Stieltjes integral,”Ann. Math.20 (1919), 177–186.MathSciNetMATHCrossRefGoogle Scholar
  2. F. P. Cantelli, “Una teoria astratta del calcola delle probabilitá,”Ist. Ital.Attuari3 (1932).Google Scholar
  3. H. Chernoff. “Large sample theory: Parametric caseAnn. Math. Stat.27 (1956), 1–22.MathSciNetMATHCrossRefGoogle Scholar
  4. Y. S. Chow and H. Robbins, “On optimal stopping rules,”Z. Wahr.2 (1963), 33–49.MathSciNetMATHCrossRefGoogle Scholar
  5. K. L. ChungA Course in Probability TheoryHarcourt Brace, New York, 1968; 2nd ed., Academic Press, New York, 1974.Google Scholar
  6. H. Cramér, ” Über eine Eigenschaft der normalen Verteilungsfunktion,”Math. Z. 41(1936), 405–414.MathSciNetCrossRefGoogle Scholar
  7. H. CramérMathematical Methods of StatisticsPrinceton Univ. Press, Princeton, 1946.MATHGoogle Scholar
  8. H. CramérRandom Variables and Probability DistributionsCambridge Tracts Math. No. 36, Cambridge Univ. Press, London, 1937; 3rd ed., 1970.MATHCrossRefGoogle Scholar
  9. J. L. DoobStochastic ProcessesWiley, New York, 1953.MATHGoogle Scholar
  10. W. FellerAn Introduction to Probability Theory and Its ApplicationsVol. 2, Wiley, New York, 1966.MATHGoogle Scholar
  11. M. Fréchet and J. Shohat, “A proof of the generalized second limit theorem in the theory of probability,”Trans. Amer. Math. Soc.33 (1931).Google Scholar
  12. J. GlivenkoStieltjes Integral1936 [in Russian].MATHGoogle Scholar
  13. B. V. Gnedenko and A. N. KolmogorovLimit Distributions for Sums of Independent Random Variables(K. L. Chung, translator), Addison-Wesley, Reading, Mass., 1954.Google Scholar
  14. G. H. HardyA course of Pure Mathematics10th ed., Cambridge Univ. Press, New York, 1952.MATHGoogle Scholar
  15. E. Helly, “Uber lineare Funktionaloperationen,”Sitz. Nat. Kais. Akad. Wiss. 121IIa (1921), 265–277.Google Scholar
  16. P. LévyCalcul des probabilitésGauthier-Villars, Paris, 1925.MATHGoogle Scholar
  17. P. LévyThéorie de l’addition des variables aléatoiresGauthier-Villars, Paris, 1937; 2nd ed., 1954.MATHGoogle Scholar
  18. M. LoèveProbability Theory3rd ed., Van Nostrand, Princeton, 1963; 4th ed., Springer-Verlag, Berlin and New York, 1977–1978.Google Scholar
  19. E. LukacsCharacteristic Functions2nd ed., Hoffner, New York, 1970.MATHGoogle Scholar
  20. G. Polya, “ Remarks on characteristic functions,”Proc. 1st Berkeley Symp. Stat. and Prob. 1949 115–123. Google Scholar
  21. D. A. Raikov, “On the decomposition of Gauss and Poisson laws,”Izv. Akad. Nauk USSR (Ser. Mat.) 2(1938a), 91–124 [in Russian].Google Scholar
  22. D. A. Raikov, “ Un théorème de la théorie des fonctions caracteristiques analytiques,”Izvest. Fak. Mat. Mek. Univ. Tomsk NII2 (1938b), 8–11.Google Scholar
  23. H. Robbins, “Mixture of distributions,”Ann. Math. Stat. 19(1948), 360–369.MathSciNetMATHCrossRefGoogle Scholar
  24. S. SaksTheory of the Integral(L. C. Young, translator), Stechert-Hafner, New York, 1937.Google Scholar
  25. N. A. Sapogov, “The stability problem for a theorem of Cramer,”Izv. Akad. Nauk USSR (ser. Mat.) 15(1951), 205–218. [See also selected translationsMath. Stat. and Prob. 141–53, Amer. Math. Soc.]MathSciNetMATHGoogle Scholar
  26. H. Scheffé, “A useful convergence theorem for probability distributions,”Ann. Math. Stat. 18(1947), 434–438.MATHCrossRefGoogle Scholar
  27. J. A. Shohat and J. D. Tamarkin, “The problem of moments,” Math. Survey No. 1, Amer. Math. Soc., New York, 1943.Google Scholar
  28. E. Slutsky, “Uber stochastiche Asymptoten und Grenzwerte,” Metron5(1925), 1–90.Google Scholar
  29. H. Teicher, “On the factorization of distributions,” Ph.D. Thesis, 1950. [See alsoAnn. Math. Stat. 25(1954), 769–774.]Google Scholar
  30. H. Teicher, “Sur les puissances de fonctions caracteristiques,”Comptes Rendus 246(1958), 694–696.MathSciNetMATHGoogle Scholar
  31. H. Teicher, “On the mixture of distributions,”Ann. Math. Stat. 31(1960), 55–73.MathSciNetMATHCrossRefGoogle Scholar
  32. H. Teicher, “Identifiability of mixtures,”Ann. Math. Stat. 32(1961), 244–248.MathSciNetMATHCrossRefGoogle Scholar
  33. E. C. TitchmarshThe Theory of FunctionsOxford Univ. Press, 1932; 2nd ed., 1939.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Yuan Shih Chow
    • 1
  • Henry Teicher
    • 2
  1. 1.Department of StatisticsColumbia UniversityNew YorkUSA
  2. 2.Department of StatisticsRutgers UniversityNew BrunswickUSA

Personalised recommendations