Conditional Expectation, Conditional Independence, Introduction to Martingales

  • Yuan Shih Chow
  • Henry Teicher
Part of the Springer Texts in Statistics book series (STS)


From a theoretical vantage point, conditioning is a useful means of exploiting auxiliary information. From a practical vantage point, conditional probabilities reflect the change in unconditional probabilities due to additional knowledge.


Conditional Probability Probability Space Conditional Expectation Borel Function Degenerate Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Y.V. Borovskich and V. S. KorolyukTheory of U-StatisticsKluwer Academic Publishers, Boston, 1994.Google Scholar
  2. L. BreimanProbabilityAddison-Wesley, Reading, Mass., 1968.zbMATHGoogle Scholar
  3. H. Millman, “Austauschbare stochastiche Variabeln und ihre Grenzwartsatze,”Univ. of California Publications in Statistics3 (1960), 1–36.Google Scholar
  4. Y. S. Chow, “A martingale inequality and the law of large numbers,”Proc. Amer. Math. Soc. 11(1960), 107–111.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Y. S. Chow, H. Robbins, and D. SiegmundGreat Expectations: The Theory of Optimal StoppingHoughton Mifflin, Boston, 1972.Google Scholar
  6. Y. S. Chow, H. Robbins, and H. Teicher, “ Moments of randomly stopped sums,”Ann. Math. Stat.36 (1965), 789–799.MathSciNetzbMATHCrossRefGoogle Scholar
  7. K. L. ChungA course in Probability TheoryHarcourt Brace, New York, 1968; 2nd ed., Academic Press, New York, 1974.Google Scholar
  8. J. L. Doob, “ Regular properties of certain families of chance variables,”Trans. Amer. Math. Soc.47 (1940), 455–486.MathSciNetCrossRefGoogle Scholar
  9. J. L. DoobStochastic ProcessesWiley, New York, 1953.zbMATHGoogle Scholar
  10. L. E. Dubins and D. A. Freedman, “A sharper form of the Borel-Cantelli lemma and the strong law,”Ann. Math. Stat.36 (1965), 800–807.MathSciNetzbMATHCrossRefGoogle Scholar
  11. E. B. Dynkin and A. Mandelbaum, “Symmetric statistics, Poisson point processes and multiple Wiener integrals,”Ann. Statist. 11(1983), 739–745.MathSciNetzbMATHCrossRefGoogle Scholar
  12. B. de Finetti, La prévision; ses lois logiques, ses sources subjectives,“Annales de l’Institut Henri Poincaré7 (1937), 1–68.Google Scholar
  13. E. Giné and J. Zinn, “Marcinkiewicz-type laws of large numbers and convergence of moments for U-statistics,”Probability in Banach Spaces8 (1992), 273–291, Birkhauser, Boston.Google Scholar
  14. J. Hájek and A. Rényi, “Generalization of an inequality of Kolmogorov,”Acta Math. Acad. Sci. Hung.6 (1955), 281–283.zbMATHCrossRefGoogle Scholar
  15. P. R. HalmosMeasure TheoryVan Nostrand, Princeton, N. J., 1950; Springer-Verlag, Berlin and New York, 1974.Google Scholar
  16. E. Hewitt and L. J. Savage, “Symmetric measures on Cartesian products,”Trans. Amer. Math. Soc.80 (1955), 470–501.MathSciNetzbMATHCrossRefGoogle Scholar
  17. W. Hoeffding, “The strong low of large numbers for U-statistics,” Institute of Statistics Mimeo Series 302 (1961), University of North Carolina, Chapel Hill, NC.Google Scholar
  18. D. G. Kendall, “On finite and infinite sequences of exchangeable events,”Studia Scient. Math. Hung.2 (1967), 319–327.MathSciNetzbMATHGoogle Scholar
  19. M. J. Klass, “Properties of optimal extended-valued stopping rules,”Ann. Prob. 1(1973), 719–757.MathSciNetzbMATHCrossRefGoogle Scholar
  20. K. KrickebergProbability TheoryAddison-Wesley, Reading, Mass., 1965.zbMATHGoogle Scholar
  21. P. LévyThéorie de l’addition des variables aléatoiresGauthier-Villars, Paris, 1937; 2nd ed., 1954.zbMATHGoogle Scholar
  22. M. LoéveProbability Theory3rd ed., Van Nostrand, Princeton, 1963; 4th ed., Springer-Verlag, Berlin and New York, 1977–1978.Google Scholar
  23. P. K. Sen, “On.ℒPconvergence of U-statistics,”Ann. Inst. Statist. Math. 26(1974), 55–60.MathSciNetzbMATHCrossRefGoogle Scholar
  24. R. J. SerflingApproximation Theorems of Mathematical StatisticsWiley, New York.Google Scholar
  25. H. Teicher, “On the Marcinkiewicz-Zygmund strong law for U-statistics,”J. Theoret. Probability 10(1997)Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Yuan Shih Chow
    • 1
  • Henry Teicher
    • 2
  1. 1.Department of StatisticsColumbia UniversityNew YorkUSA
  2. 2.Department of StatisticsRutgers UniversityNew BrunswickUSA

Personalised recommendations