Developmental Consequences of Programmed Cell Death in Human Preimplantation Embryos

  • Andrea Jurisicova
  • Sussanah L. Varmuza
  • Robert F. Casper
Part of the Proceedings in the Serono Symposia USA Series book series (SERONOSYMP)


For many couples the failure to achieve and maintain pregnancy remains a major problem. An alternative solution for these couples is in-vitro fertilization (IVF). When the first IVF baby was born, no one expected that this unconventional method of conception would become such a widely used treatment for infertility. From the report of clinical results of assisted reproductive technology procedures in the USA and Canada for 1991, it is clear that of the 21,083 oocyte retrievals, 87.1% led to a successful fertilization and preembryo transfer. However, only 4,017 clinical pregnancies (19.1%) were achieved (1). The overall birth rate per IVF retrieval does not exceed 15.25%.


Granulosa Cell Follicular Fluid Human Embryo Zona Pellucida Blastocyst Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Society for Assisted Reproductive Technology, The American Fertility Society. Assisted reproductive technology in the United States and Canada; 1991 results from the Society for Assisted Reproductive Technology generated from The American Fertility Society Registry. Fertil Steril 1993; 59: 956–62.Google Scholar
  2. 2.
    Winston RML, Handyside AH. New challenges in human in vitro fertilization. Science 1993; 260: 932–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Leese HJ, Conaghan J, Martin KL, Hardy K. Early human embryo metabolism. Bioassays 1993; 15: 259–64.CrossRefGoogle Scholar
  4. 4.
    Hardy K, Handyside AH, Winston RM. The human blastocyst: cell number, death and allocation during late preimplantation development in vitro. Development 1989; 107: 597–604.PubMedGoogle Scholar
  5. 5.
    Schultz GA, Heyner S. Gene expression in preimplantation mammalian embryos. Mutation Res 1992; 296; 17–31.PubMedCrossRefGoogle Scholar
  6. 6.
    Braude P, Bolton V, Moore S. Human gene expression first occurs between the four and eight cell stages of preimplantation development. Nature 1988; 332: 459–61.PubMedCrossRefGoogle Scholar
  7. 7.
    Tesarik J, Kopecny V, Plachot M, Mandelbaum J. Early morphological signs of embryonic genome expression in human preimplantation development as revealed by quantitative electron microscopy. Develop Biol 1988; 128: 15–20.PubMedCrossRefGoogle Scholar
  8. 8.
    Flach G, Johnson MH, Braude PR, Taylor RAS, Bolton VN. The transition from maternal to embryonic control in the 2-cell mouse embryo. EMBO J 1982; 1: 681–6.PubMedGoogle Scholar
  9. 9.
    Bolton V, Braude PR. Development of spare human preimplantation embryos in vitro. Curr Topics Dev Biol 1987; 23: 93–113.CrossRefGoogle Scholar
  10. 10.
    Plachot M, Mandelbaum J. Oocyte maturation, fertilization and embryonic growth in vitro. Br Med Bull 1980; 46: 675–94.Google Scholar
  11. 11.
    Erenus M, Zoues C, Rajamahendran P, Leung S, Fluker M, Gomel V. The effect of embryo quality on subsequent pregnancy rates after in vitro fertilization. Fertil Steril 1991; 56: 707-l0.PubMedGoogle Scholar
  12. 12.
    Summers MC, Bhatnagar PR, Lawitts JA, Biggers JD. Fertilization in vitro of mouse ova from inbred and outbred strains: complete preimplantation embryo development in glucose-supplemented KSOM. Biol Reprod 1995; 53: 431–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Formigli I, Roccio C, Belotti G, Stangalini A, Coglitore MT, Formogli G. Nonsurgical flushing of the uterus for the pre-embryo recovery: possible clinical applications. Hum Reprod 1990; 5: 329–35.PubMedGoogle Scholar
  14. 14.
    Hardy K, Winston RML, Handyside AH. Binucleate blastomeres in preimplanta-tion human embryos in vitro: failure of cytokinesis during early development. J Reprod Fertil 1993; 98: 549–58.PubMedCrossRefGoogle Scholar
  15. 15.
    Jurisicova A, Varmuza S, Casper RF. Involvement of programmed cell death in preimplantation embryo demise. Hum Reprod Update 1995; 1: 558–66.PubMedCrossRefGoogle Scholar
  16. 16.
    Jurisicova A, Varmuza S, Casper RF. Programmed cell death and human embryo fragmentation. Mol Hum Reprod 1996; 2: 101–6.CrossRefGoogle Scholar
  17. 17.
    Rotello RJ, Fernandez PA, Yuan J. Anti-apogens and anti-engulfens: monoclonal antibodies reveal specific antigens on apoptotic and engulfment cells during chicken embryonic development. Development 1994; 120: 1421–31.PubMedGoogle Scholar
  18. 18.
    Drake BL, Rodger JC. Phagocytic properties of cultured murine trophoblast. Placenta 1987; 8: 129–39.PubMedCrossRefGoogle Scholar
  19. 19.
    Winston NJ, Braude PR, Pickering SJ, George MA, Cant A, Currie J, Johnson MH. Incidence of abnormal morphology and nucleocytoplasmic ratios in 2-, 3-and 5-day human preembryos. Hum Reprod 1991; 6: 17–24.PubMedGoogle Scholar
  20. 20.
    El-Shershaby AM, Hinchliffe JR. Cell redundancy in the zona-intact preimplantation mouse blastocyst: a light and electron microscope study of dead cells and their fate. J Embryo! Exp Morphol 1974; 31: 643–54.Google Scholar
  21. 21.
    Mohr LR, Trounson AO. Comparative ultrastructure of hatched human mouse and bovine blastocysts. J Reprod Fertil 1982; 66: 499–504.PubMedCrossRefGoogle Scholar
  22. 22.
    Parchment RE. The implications of a unified theory of PCD, polyamines, oxyradicals and histogenesis in the embryo. Int J Dev Biol 1993; 37: 75–83.PubMedGoogle Scholar
  23. 23.
    Pierce GB, Lewellyn AL, Parchment RE. Mechanism of PCD in the blastocyst. Proc Nat! Acad Sci USA 1989; 86: 3654–8.CrossRefGoogle Scholar
  24. 24.
    Pierce GB, Parchment RE, Lewellyn AL. Hydrogen peroxide as a mediator of PCD in the blastocyst. Differentiation 1991; 46: 181–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Erbach GT, Lawitts JA, Papaioannou VE, Biggers JD. Differential growth of the mouse preimplantation embryo in chemically defined media. Biol Reprod 1994; 50: 1027–33.PubMedCrossRefGoogle Scholar
  26. 26.
    Ratan PR, Murphy TH, Baraban JM. Oxidative stress induces apoptosis in embryonic cortical neurons. J Neurochem 1994; 62: 376–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Nasr-Esfahani MH, Aitken JR, Johnson MH. Hydrogen peroxide levels in mouse oocytes and early cleavage stage embryos developed in vitro or in vivo. Development 1990; 109: 501–7.PubMedGoogle Scholar
  28. 28.
    Gardiner CS, Reed DJ. Status of glutathione during oxidant-induced oxidative stress in the preimplantation mouse embryo. Biol Reprod 1994; 51: 1307–14.PubMedCrossRefGoogle Scholar
  29. 29.
    Beaver JP, Waring P. A decrease in intracellular glutathione concentration proceeds the onset of apoptosis in munne thymocytes. Eur J Cell Biol 1995; 68: 47–54.PubMedGoogle Scholar
  30. 30.
    Ferrari G, Yan CY, Greene LA. N-acetyl cysteine prevents apoptotic death of neuronal cells. J Neurosci 1995; 15: 2857–66.PubMedGoogle Scholar
  31. 31.
    Tilly JL, Tilly KI. Inhibitors of oxidative stress mimic the ability of follicle-stimulating hormone to suppress apoptosis in cultured rat ovarian follicles. Endocrinology 1995; 136: 242–52.PubMedCrossRefGoogle Scholar
  32. 32.
    Bavister B. Culture of preimplantation embryos: facts and artifacts. Hum Reprod Update 1995; 1: 91–148.PubMedCrossRefGoogle Scholar
  33. 33.
    Trocino RA, Shoichi A, Ishibashi M, Matsumoto K, Matsuo H, Yamamoto H, Goto S, Urata Y, Kondo T, Nagataki S. Significance of glutathione depletion and oxidative stress in early embryogenesis in glucose-induced rat embryo culture. Diabetes 1995; 44: 992–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Barnet D, Bavister B. What is the relationship between the metabolism of preimplantation embryos and their developmental competence. Mol Repr Dev 1996; 43: 105–33.CrossRefGoogle Scholar
  35. 35.
    Dvorak M, Tesarik J. Differentiation of mitochondria in the human preimplanta-tion embryo grown in vitro. Scr Med 1985; 3: 161–9.Google Scholar
  36. 36.
    Matos DG, Furnus C, Moses D, Saldassarre H. Effect of cysteamine on glutathione level and developmental capacity of bovine oocyte matured in vitro. Mo1 Reprod Dev 1995; 42: 432–6.CrossRefGoogle Scholar
  37. 37.
    Wiemer K, Cohen J, Wiker S, Malter H, Wright G, Godke R. Coculture of human zygotes on fetal bovine uterine fibroblasts: embryonic morphology and implantation. Fertil Steril 1989; 52: 503–8.PubMedGoogle Scholar
  38. 38.
    Bongso A, Ng S, Fong C, Ratnam S. Coculture: a new lead in embryo quality improvement for assisted reproduction. Fertil Steril 1991; 56: 179–91.PubMedGoogle Scholar
  39. 39.
    Stewart C, Kaspar P, Brunet L, Bhatt H, Gadi I, Konthegn F, Abbondanzo S. Błastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 1992; 359: 76–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Pesce M, Farrace M, Piacentini M, Dolci S, De Felici M. Stem cell factor and leukaemia inhibitory factor promote germ cell survival suppressing programmed cell death (apoptosis). Development 1993; 118: 1089–94.PubMedGoogle Scholar
  41. 41.
    Jurisicova A, Ben-Chetrit A, Varmuza S, Casper RF. Recombinant human leukaemia inhibitory factor (rLIF) does not enhance in-vitro human blastocyst formation. Fertil Steril 1995; 64: 999–1002.PubMedGoogle Scholar
  42. 42.
    Kaufmann M.H. Early mammalian development. Cambridge University Press, Cambridge 1983; 28–32.Google Scholar
  43. 43.
    De Silva M, Stracher K, Sauer S, Horvath P, Butler W. Effect of removal of cumulus cells from 1-cell mouse embryos on in vitro development. J IVF ET 1990; 7: 129–33.Google Scholar
  44. 44.
    Guo J, Jurisicova A, Casper RF. Detection of deoxyribonucleic fragmentation in human sperm: correlation with fertilization in vitro. Biol Reprod 1997; 56: 602–7.CrossRefGoogle Scholar
  45. 45.
    Balakier H, Squire J, Casper RF. Characterisation of human abnormal one pro-nuclear oocytes by morphology, cytogenetics and in situ hybridization. Hum Reprod 1993; 8: 740–3.PubMedGoogle Scholar
  46. 46.
    Van Blerkom J, Davis PW, Merriam J. A retrospective analysis of unfertilized and presumed parthenogenetically activated human oocytes demonstrates a high frequency of sperm penetration. Hum Reprod 1994; 9: 2381–8.PubMedGoogle Scholar
  47. 47.
    Raff MC, Barres BA, Fiume JF, Coles HSR, Ishizaki Y, Jacobson MD. Programmed cell death and the control of the cell survival Phil Trans R Soc Lond 1994; 345: 263–8.Google Scholar
  48. 48.
    Papadopoulos G, Templeton AA, Fisk N, Randall J. The frequency of chromosomal anomalies in human preimplantation embryo after in vitro fertilization. Hum Reprod 1989; 4: 91–8.PubMedGoogle Scholar
  49. 49.
    Zenzes MT, Casper, RF. Cytogenetics of human oocytes, zygotes, and embryos after in vitro fertilization. Hum Genet 1992; 88: 367–75.PubMedCrossRefGoogle Scholar
  50. 50.
    Michaeli G, Fejgin M, Ghetler Y, Ben Nun I, Beyth Y, Amiel A. Chromosomal analysis of unfertilized oocytes and morphologically abnormal preimplantation embryos from an in vitro fertilization program. J IVF ET 1990; 7: 341–6.Google Scholar
  51. 51.
    Pellestor F, Dufour MC, Arnal F, Humeau C. Direct assessment of the rate of chromosomal abnormalities in grade IV human embryos produced by in vitro fertilization procedure. Hum Reprod 1994; 9: 293–302.PubMedGoogle Scholar
  52. 52.
    Zenzes MT, Wang P, Casper RF. Chromosome normality of untransferred (spare) embryos correlates with likelihood of pregnancy in the in vitro fertilization procedure. Lancet 1992; 340: 391–4.PubMedCrossRefGoogle Scholar
  53. 53.
    Munne S, Cohen J. Monospermic polyploidy and atypical embryo morphology. Hum Reprod 1994; 9: 506–10.PubMedGoogle Scholar
  54. 54.
    Gaulden M. Maternal age effect: the enigma of Down syndrome and other trisomic conditions. Mutatation Res 1992; 296: 69–88.CrossRefGoogle Scholar
  55. 55.
    Fischer B, Kunzel W, Kleinstein J, Gips H. Oxygen tension in follicular fluid falls with follicle maturation. Eur J Obstet Gynecol 1992; 43: 39–43.CrossRefGoogle Scholar
  56. 56.
    Gotlieb RA, Giesing H, Zhu J, Engler R, Babior B. Cell acidification in apoptosis: granulocyte colony-stimulating factor delays programmed cell death in neutrophils by up-regulating the vascular H-ATPase. Proc Natl Acad Sci USA 1995; 92: 5965–8.CrossRefGoogle Scholar
  57. 57.
    Van Blerkom J. The influence of intrinsic and extrinsic factors on the developmental potential and chromosomal normality of the human oocyte. J Soc Gynecol Invest 1996; 3: 3–11.CrossRefGoogle Scholar
  58. 58.
    Piquette GN, Tilly JL, Prichard L, Simon C, Polan ML. Detection of apoptosis in human and rat ovarian follicles. J Soc Gynecol Invest 1994; 1: 297–301.Google Scholar
  59. 59.
    Van Blerkom J, Davis PW, Lee J. ATP content of human oocytes and developmental potential and outcome after in vitro fertilization and embryo transfer. Hum Reprod 1995; 10: 415–24.PubMedGoogle Scholar
  60. 60.
    Tilly JL. Apoptosis and the ovary: a fashionable trend or food for thought? Fertil Steril 1997; 67: 226–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Cohen J, Alikani M, Liu H-C, Rosenwaks Z. Rescue of human embryos by micromanipulation. Bailliere’s Clin Obstet Gynecol 1994; 8: 95–116.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Andrea Jurisicova
  • Sussanah L. Varmuza
  • Robert F. Casper

There are no affiliations available

Personalised recommendations