Skip to main content

Apoptosis in the Ovary: The Role of DNase I

  • Chapter
Cell Death in Reproductive Physiology

Part of the book series: Proceedings in the Serono Symposia USA Series ((SERONOSYMP))

  • 84 Accesses

Abstract

The essential function of the ovary, to produce oocytes and hormones, involves follicular development, ovulation, and luteinization. The predominant event in the ovary however, is the loss of follicles through atresia. Luteal regression depends on the reproductive state of the female and must occur before the next wave of follicular development can proceed. Follicular atresia and luteal regression account for the removal of most steroidogenic cells from the ovary, but the physiological mechanisms that underlie these two predominant and important aspects of ovarian function are not fully understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 1980; 284: 555–56.

    PubMed  CAS  Google Scholar 

  2. Hughes FM Jr, Gorospe WC. Biochemical identification of apoptosis (programmed cell death) in granulosa cells: evidence for a potential mechanism underlying follicular atresia. Endocrinology 1991; 129: 2415–22.

    PubMed  CAS  Google Scholar 

  3. Tilly JL, Kowalski KI, Johnson AL, Hsueh AJW. Involvement of apoptosis in ovarian follicular atresia and postovulatory regression. Endocrinology 1991; 129: 2799–801.

    PubMed  CAS  Google Scholar 

  4. Hsueh AJW, Billig H, Tsafriri A. Ovarian follicular atresia: a hormonally controlled process. Endocr Rev 1994; 15: 707–24.

    PubMed  CAS  Google Scholar 

  5. Juengal JL, Garverick HA, Johnson AL, Youngquist RS, Smith MF. Apoptosis during luteal regression in cattle. Endocrinology 1993; 132: 249–54.

    Google Scholar 

  6. Billig H, Futura I, Hsueh AJW. Estrogens inhibit and androgens enhance ovarian granulosa cell apoptosis. Endocrinology 1993; 133: 2204–12.

    PubMed  CAS  Google Scholar 

  7. Billig H, Futura I, Hsueh AJW. Gonadotropin-releasing hormone directly induces apoptotic cell death in the rat ovary: biochemical and in situ detection of deoxyribonucleic acid fragmentation in granulosa cells. Endocrinology 1994; 134: 245–52.

    PubMed  CAS  Google Scholar 

  8. Chun SY, Billig H, Tilly J, Furuta I, Tsafriri A, Hsueh AJW. Gonadotropin suppression of apoptosis in cultured preovulatory follicles: mediatory role of endogenous insulin like growth factor-1. Endocrinology 1994; 135: 1845–53.

    PubMed  CAS  Google Scholar 

  9. Dharmarajan AM, Goodman SB, Tilly KI, Tilly JL. Apoptosis during functional corpus luteum regression: evidence of a role for chorionic gonadotropin in promoting luteal cell survival. EndocrJ 1994; 2: 295–303.

    CAS  Google Scholar 

  10. Jones DP, McConkey DJ, Nicotera P, Orrenius S. Calcium-activated DNA fragmentation in rat liver nuclei. J Biol Chem 1989; 264: 6398–403.

    PubMed  CAS  Google Scholar 

  11. McConkey DJ, Hartzell P, Nicotera P, Orrenius S. Calcium-activated DNA fragmentation kills immature thymocytes. FASEB J 1989; 3: 1843–9.

    PubMed  CAS  Google Scholar 

  12. McConkey DJ, Nicotera P, Hartzell P, Bolloma G, WyllieAH, Orrenius S. Glucocorticoids activate a suicide process in thymocytes through elevation of cytosolic Ca++ concentration. Arch Biochem Biophys 1989; 269: 365–70.

    PubMed  CAS  Google Scholar 

  13. Cohen JJ, Duke RC. Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol 1984; 132: 38–42.

    PubMed  CAS  Google Scholar 

  14. McConkey DJ, Hartzell P, Duddy SK, Hakansson H, Orrenius S. 2378-Teterachlorodibenzo-p-dioxin kills immature thymocytes by Ca2+-mediated endonuclease activation. Science 1988; 242: 256–9.

    PubMed  CAS  Google Scholar 

  15. Schwartzman RA, Cidlowski JA. Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr Rev 1993; 14: 133–51.

    PubMed  CAS  Google Scholar 

  16. Kizaki H, Tadakuma T, Odaka C, Muramatsu J, Ishamura Y. Activation of a suicide process of thymocytes through DNA fragmentation by calcium ionophores and phorbol esters. J Immunol 1989; 143: 1843–9.

    Google Scholar 

  17. Thompson EB. Apoptosis and steroid hormones. Mol Endocrinol 1994; 8: 665–73.

    PubMed  CAS  Google Scholar 

  18. Rodriguez-Tarduchey G, Collin M, Lopez-Rivas S. Regulation of apoptosis in interleukin 3-dependent hemopoeitic cells by interleukin-3 and calcium ionophores. EMBO J 1990; 9: 2997–3002.

    Google Scholar 

  19. Hockenbury DM, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990; 348: 334–6.

    Google Scholar 

  20. Strasser A, Hams AW, Cory S. Bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell 1991; 67: 889–99.

    PubMed  CAS  Google Scholar 

  21. Arends MJ, McGregor AH, Toft NJ, Brown EJ, Wyllie AH. Susceptibility to apoptosis is differentially regulated by c-myc and mutated Ha-ras oncogenes and is associated with endonuclease availability. Br J Cancer 1993; 68: 1127–33.

    PubMed  CAS  Google Scholar 

  22. Fernandez A, Fosdick LJ, Mann MC, Diaz C, McDonnell TJ, Ananthaswamy HN, McConkey DJ. Differential regulation of endogenous endonuclease activation in activated murine fibroblast nuclei by ras and bcl-2. Oncogene 1995; 10: 769–74.

    PubMed  CAS  Google Scholar 

  23. Tilly JL, Tilly KI, Kenton ML, Johnson AL. Expression of the bcl-2gene family in the immature rat ovary: equine chorionic gonadotropin-mediated inhibition of apoptosis is associated with decreased baxand constitutive bcl-2and bcl-x LONGmessenger ribonucleic acid levels. Endocrinology 1995; 136: 232 - 41.

    PubMed  CAS  Google Scholar 

  24. Miura M, Zhu H, Rotello R, Hartweig EA, Yuan J. Induction of apoptosis in fibroblasts by IL-1β-converting enzyme, a mammalian homologue of the C. elegansdeath gene ced-3. Cell 1993; 75: 653–60.

    PubMed  CAS  Google Scholar 

  25. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC. Cleavage of poly(ADP-ribose) polymerase by a protease with properties like ICE. Nature 1994; 371: 346–7.

    PubMed  CAS  Google Scholar 

  26. Carson DA, Seto S, Wasson DB, Carrera CJ. DNA strand breaks, NAD metabolism, and programmed cell death. Exp Cell Res 1986; 164: 273–81.

    PubMed  CAS  Google Scholar 

  27. Nelipovich PA, Nikonova LV, Umansky SR. Inhibition of poly (ADP-ribose) polymerase as a possible reason for activation of Ca2+/Mg2+-dependent endonuclease in thymocytes of irradiated rats. Int J Radiat Biol 1988; 53: 749–65.

    CAS  Google Scholar 

  28. Ray SD, Sorge CL, Kamendulis LM, Corcoran GB. Ca++-activated DNA fragmentation and dimethylnitrosamine-induced hepatic necrosis: effects of Ca++-endonuclease and poly(ADP-ribose) polymerase inhibitors in mice. J Pharmacol Exp Ther 1992; 263: 387–94.

    PubMed  CAS  Google Scholar 

  29. Rice WG, Hillyer CD, Harten B, Schaeffer CA, Dorminy M, Lackey DA III, Kirsten E, Mendeleyev J, Buki KG, Hakam A, Kun E. Induction of endonuclease-mediated apoptosis in tumor cells by C-nitroso-substituted ligands of poly(ADP-ribose) polymerase. Proc Natl Acad Sci USA 1992; 89: 7703–7.

    PubMed  CAS  Google Scholar 

  30. Tanaka Y, Yoshihara K, Itaya A, Kamiya T, Koide SS. Mechanism of the inhibition of Ca2+, Mg2+-dependent endonuclease of bull seminal plasma induced by ADPribosylation. J Biol Chem 1984; 259: 6579–85.

    PubMed  CAS  Google Scholar 

  31. Sawazaki K, Yasuda T, Nadano D, Tenjo E, Iida R, Takeshita H, Kishi K. A new individualization marker of human semen: deoxyribonuclease I (DNase I) polymorphism. Forensic Sci Int 1992; 57: 39–44.

    PubMed  CAS  Google Scholar 

  32. Yasuda T, Sawazaki K, Nadano D, Takeshita H, Nakanaga M, Kishi K. Human seminal deoxyribonuclease I (DNase I): purification, enzymological and immunological characterization and origin. Clin Chim Acta 1993;218:5–16.

    PubMed  CAS  Google Scholar 

  33. Takeshita H, Yasuda T, Nadano D, Tenjo E, Sawazaki K, Iida R, Kishi K. Detection of deoxyribonucleases I and II (DNases I and II) activities in reproductive organs of male rabbits. In J Biochem 1994; 26: 1025–31.

    CAS  Google Scholar 

  34. Flaws JA, Kugu K, Trbovich AM, Desanti A, Tilly KI, Hirshfield AN, Tilly JL. Interleukin-1β-converting enzyme-related proteases (IRPs) and mammalian cell death: dissociation of IRP-induced oligonucleosomal endonuclease activity from morphological apoptosis in granulosa cells of the ovarian follicle. Endocrinology 1995; 136: 5042–53.

    PubMed  CAS  Google Scholar 

  35. Fleiger D, Reithmuller G, Zeigler-Heitbrock HWL. Zinc++ inhibits both tumor necro sis factor-mediated DNA fragmentation and cytolysis. Int J Cancer 1989; 44: 315–9.

    Google Scholar 

  36. Batistatou A, Greene LA. Aurintricarboxylic acid rescues PC12 calls and sympathetic neurons from cell death caused by nerve growth factor deprivation: correlation with suppression of endonuclease activity. J Cell Biol 1991; 115: 461–71.

    PubMed  CAS  Google Scholar 

  37. Ormerod MG, O’Neill CF, Robertson D, Harrap KR. Cisplatin induces apoptosis in a human ovarian carcinoma cell line without concomitant internucleosomal degradation of DNA. Exp Cell Res 1994; 211: 231–7.

    PubMed  CAS  Google Scholar 

  38. Oberhammer F, Fritsch G, Schmied M, Pavelka M, Printz D, Purchio T, Lassman H, Schulte-Hermann R. Condensation of the chromatin at the membrane of an apoptotic nucleus is not associated with activation of an endonuclease. J Cell Sci 1993; 104: 317–26.

    PubMed  CAS  Google Scholar 

  39. Ucker DS, Obermiller PS, Eckhart W, Apgar JR, Berger NA, Meyers J. Genome digestion is a dispensable consequence of physiological cell death mediated by toxic T lymphocytes. Mol Cell Biol 1992; 12: 3060–9.

    PubMed  CAS  Google Scholar 

  40. Jacobson MD, Fiume JF, Raff MC. Programmed cell death and bcl-2 protection in the absence of a nucleus. EMBO J 1994; 13: 1899–910.

    PubMed  CAS  Google Scholar 

  41. Zeleznik AJ, Ihrig LI, Bassett G. Developmental expression of Ca++/Mg++-dependent endonuclease activity in rat granulosa and luteal cells. Endocrinology 1989; 125: 2218–20.

    PubMed  CAS  Google Scholar 

  42. Boone DL, Yan W, Tsang BK. Identification of a deoxyribonuclease I-like endonuclease in rat granulosa and luteal cell nuclei. Biol Reprod 1995; 53: 1057–65.

    PubMed  CAS  Google Scholar 

  43. Hirshfield AN. Development of follicles in the mammalian ovary. Int Rev Cytol 1991; 124: 43–101.

    PubMed  CAS  Google Scholar 

  44. Greenwald GS, Terranova PF. Follicular selection and its control. In Knobil E, Neill J, eds. The physiology of reproduction. New York: Raven Press, 1988: 387–435.

    Google Scholar 

  45. Rosenthal AL, Lacks SA. Nuclease activity detection in polyacrylamide gels. Anal Biochem 1977; 80: 76–90.

    PubMed  CAS  Google Scholar 

  46. Alnemri ES, Litwack G. Glucocorticoid-induced lymphocytolysis is not mediated by an induced endonuclease. J Biol Chem 1989; 264: 4104–11.

    PubMed  CAS  Google Scholar 

  47. Baxter GD, Smith PJ, Lavin MF. Molecular changes associated with induction of cell death in a human T-cell leukaemia line: putative nucleases identified as histones. Biochem Biophys Res Comm 1989; 162: 30–2.

    PubMed  CAS  Google Scholar 

  48. Hitchcock SE. Actin: deoxyribonuclease I interaction. J Biol Chem 1980; 255: 566873.

    Google Scholar 

  49. Lazarides E, Lindberg U. Actin is the naturally occurring inhibitor of deoxyribonuclease I. Proc Natl Acad Sci USA 1974; 71: 4742–6.

    PubMed  CAS  Google Scholar 

  50. Kreuder V, Diekhoff J, Sittig M, Mannherz HG. Isolation, characterisation and crystallization of deoxyribonuclease I from bovine and rat parotid gland and its interaction with rabbit skeletal muscle actin. Eur J Biochem 1984; 139: 389–400.

    PubMed  CAS  Google Scholar 

  51. Lacks A. Deoxyribonuclease I in mammalian tissues. Specificity of inhibition by actin. J Biol Chem 1981; 256: 2644–8.

    PubMed  CAS  Google Scholar 

  52. Peitsch MC, Polzar B, Stephan H, Crompton T, MacDonald HR, Mannherz HG, Tschoop J. Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death). EMBO J 1993; 12: 371–7.

    PubMed  CAS  Google Scholar 

  53. Polzar B, Peitsch MC, Loos R, Tschopp J, Mannherz HG. Overexpression of deoxyribonuclease I (DNase I) transfected into COS-cells: its distribution during apoptotic cell death. Eur J Cell Biol 1993; 62: 397–405.

    PubMed  CAS  Google Scholar 

  54. Polzar B, Zanotti S, Stephan H, Rauch F, Peitsch MC, Irlmer M, Tschoop J, Mannherz HG. Distribution of deoxyribonuclease I in rat tissues and its correlation to cellular turnover and apoptosis (programmed cell death). Eur J Cell Biol 1994; 64: 200–10.

    PubMed  CAS  Google Scholar 

  55. Kyprianou N, Isaacs JT. Activation of programmed cell death in the rat ventral prostrate after castration. Endocrinology 1988; 122: 552–62.

    PubMed  CAS  Google Scholar 

  56. Bacher M, Rausch U, Goebel HW, Polzar B, Mannherz HW, Aumuller G. Stromal and epithelial cells from rat ventral prostate during androgen deprivation and estrogen treatment-regulation of transcription. Exp Clin Endocrinol 1993; 101: 78–86.

    PubMed  CAS  Google Scholar 

  57. Lipskaia LA. Calcium and magnesium ion-dependent endonuclease 37 kDa is activated during colchicine-induced apoptosis in HL-60 cells. Tsitologiia 1994; 36: 303–9.

    PubMed  CAS  Google Scholar 

  58. Mannherz HG. Crystallization of actin in complex with actin-binding proteins. J Biol Chem 1992; 267: 11661–4.

    PubMed  CAS  Google Scholar 

  59. Mannherz HG, Barrington Leigh J, Leberman R, Pfrang H. A specific 1:1 actin:DNase I complex formed by the action of DNase I on F-actin. FEES Lett 1975; 60: 34–8.

    CAS  Google Scholar 

  60. Malika-Blaszkiewicz M, Roth JS. Evidence for the presence of DNase-actin complex in L1210 leukemia cells. FEES Lett 1993; 153: 235–9.

    Google Scholar 

  61. Peppelenbosch MP, Tertoolen LGJ, Hage WJ, de Laat SW. Epidermal growth factor-induced actin remodelling is regulated by 5-lipoxygenase and cyclooxygenase products. Cell 1993; 74: 565–75.

    PubMed  CAS  Google Scholar 

  62. Carnegie JA, Tsang BK. Microtubules and the calcium-dependent regulation of rat granulosa cell steroidogenesis. Biol Reprod 1987; 36: 1007–15.

    PubMed  CAS  Google Scholar 

  63. Carnegie JA, Tsang BK. The cytoskeleton and rat granulosa cell steroidogenesis: possible involvement of microtubules and microfilaments. Biol Reprod 1988; 38: 100–8.

    PubMed  CAS  Google Scholar 

  64. Gwynne A, Condon WA. Effects of cytochalasin B, colchicine, and vinblastine on progesterone synthesis and secretion by bovine luteal tissue in vitro. J Reprod Fertil 1982; 65: 151–6.

    PubMed  CAS  Google Scholar 

  65. Osawa S, Betz G, Hall PF. Role of actin in the responses of adrenal cells to ACTH and cyclic AMP: inhibition by DNase I. J Cell Biol 1984; 99: 1335–42.

    PubMed  CAS  Google Scholar 

  66. Shak S, Capon DJ, Hellmiss R, Marsters SA, Baker CL. Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proc Natl Acad Sci USA 1990; 87: 9188–92.

    PubMed  CAS  Google Scholar 

  67. Polzar B, Mannherz HG. Nucleotide sequence of a full length cDNA clone encoding the deoxyribonuclease I from rat parotid gland. Nuc Acid Res 1990; 18: 7151.

    CAS  Google Scholar 

  68. Peitsch MC, Irmler M, French LE, Tschopp J. Genomic organisation and expression of mouse deoxyribonuclease I. Biochem Biophys Res Comm 1995; 207: 62–8.

    PubMed  CAS  Google Scholar 

  69. Yasuda T, Kishi K, Yanagawa Y, Yoshida A. Structure of the human deoxyribonuclease I (DNase I) gene: identification of the nucleotide substitution that generates its classical genetic polymorphism. Ann Hum Genet 1995; 59: 1–15.

    PubMed  CAS  Google Scholar 

  70. Meister A, Weinrich SL, Nelson C, Rutter WJ. The chymotrypsin enhancer core. Specific factor binding and biological activity. J Biol Chem 1989; 264: 20744–51.

    PubMed  CAS  Google Scholar 

  71. McConkey DJ, Orrenius S, Jondal M. Agents that elevate cAMP stimulate DNA fragmentation in thymocytes. J Immunol 1990; 145: 1227–30.

    PubMed  CAS  Google Scholar 

  72. McConkey DJ, Hartzell P, Jondal M, Orrenius S. Inhibition of DNA fragmentation in thymocytes and isolated thymocyte nuclei by agents that stimulate protein kinase C. J Biol Chem 1989; 264: 13399–402.

    PubMed  CAS  Google Scholar 

  73. Aharoni D, Dantes A, Oren M, Amsterdam A. cAMP-mediated signals as determinants for apoptosis in primary granulosa cells. Exp Cell Res 1995; 218: 271–82.

    PubMed  CAS  Google Scholar 

  74. Gorospe WC, Spangelo BL. Interleukin-6: potential roles in neuroendocrine and endocrine function. Endocr J 1993; 1: 3–9.

    Google Scholar 

  75. Duke RC, Chervenak R, Cohen JJ. Endogenous endonuclease-induced DNA fragmentation: an early event in cell mediated cytolysis. Proc Natl Acad Sci USA 1983; 80: 6361–5.

    PubMed  CAS  Google Scholar 

  76. Waring P. DNA fragmentation induced in macrophages by gliotoxin does not require protein synthesis and is preceded by raised inositol phosphate levels. J Biol chem 1990; 265: 14476–80.

    PubMed  CAS  Google Scholar 

  77. Martin DP, Schmidt RE, Distefano PS, Lowry OH, Carter JG, Johnson EM Jr. Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused nerve growth factor deprivation. J Cell Biol 1988; 106: 829–44.

    PubMed  CAS  Google Scholar 

  78. Tilly JL, Billig H, Kowalski KI, Hsueh AJW. Epidermal growth factor and basic fibroblast growth factor suppress the spontaneous onset of apoptosis in cultured rat ovarian granulosa cells and follicles by a tyrosine kinase dependent mechanism. Mol Endocrinol 1992; 6: 1942–50.

    PubMed  CAS  Google Scholar 

  79. Flaws JA, Desanti A, Tilly K, Javid RO, Kugu K, Johnson AL, Hirshfield AN, Tilly JL. Vasoactive intestinal peptide-mediated suppression of apoptosis in the ovary: potential mechanisms of action and evidence of a conserved antiatretogenic role through evolution. Endocrinology 1995; 136: 4351–9.

    PubMed  CAS  Google Scholar 

  80. Tilly JL, Kowalski KI, Schomberg DW, Hsueh AJW. Apoptosis in atretic ovarian follicles is associated with selective decreases in messenger ribonucleic acid transcripts for gonadotropin receptors and cytochrome P450 aromatase. Endocrinology 1992; 131: 1670–6.

    PubMed  CAS  Google Scholar 

  81. Compton MM, Cidlowski JA. Identification of a glucocorticoid-induced nuclease in thymocytes. J Biol Chem 1987; 262; 8288–92.

    PubMed  CAS  Google Scholar 

  82. Gaido ML, Cidlowski JA. Identification purification and characterization of a calcium dependent endonuclease (NUC 18) from apoptotic rat thymocytes. J Biol Chem 1991; 266: 18580–5.

    PubMed  CAS  Google Scholar 

  83. Montague JW, Gaido ML, Frye C, Cidlowski JA. A calcium-dependent nuclease from apoptotic rat thymocytes is homologous with cyclophilin. J Biol Chem 1994; 269: 18877–80.

    PubMed  CAS  Google Scholar 

  84. Esquifino AI, Moreno ML, Agrasal C, Villanua MA. Effects of cyclosporin on sham-operated and pituitary-grafted young female rats. Proc Soc Exp Biol Med 1995; 208: 397–403.

    PubMed  CAS  Google Scholar 

  85. Husein M, Pingle S. Effect of cyclosporin A at therapeutic and toxic doses on the superluteinized ovaries in BALE/c mice. Transplant Proc 1992; 24: 1663–8.

    PubMed  CAS  Google Scholar 

  86. Michel U, McMaster JW, Findlay JK. Regulation of steady-state follistatin mRNA levels in rat granulosa cells in vitro. J Mol Endocrinol 1992; 9: 147–56.

    PubMed  CAS  Google Scholar 

  87. Barry MA, Eastman A. Identification of deoxyribonuclease II as an endonuclease involved in apoptosis. Arch Biochem Biophys 1993; 300: 440–50.

    PubMed  CAS  Google Scholar 

  88. Shemtov MM, Cheng DL, Kong L, Shu WP, Sassaroli MA, Droller MJ, Liu BC. LAK cell mediated apoptosis of human bladder cancer cells involves a pH-dependent endonuclease system in the cancer cell: possible mechanism of BCG therapy. J Urology 1995; 154: 269–74.

    CAS  Google Scholar 

  89. Anzai N, Kawabata H, Hirama T, Masutani H, Ueda Y, Yoshida Y, Okuma M. Types of endonuclease activity capable of inducing internucleosomal DNA fragmentation are completely different between human CD34+ cells and their granulocytic descendants. Blood 1995; 86: 917–23.

    PubMed  CAS  Google Scholar 

  90. Aarruti C, Chaudin E, De Maria A, Courtois Y, CounisMF. Characterisation of eye-lens DNases: long term persistence of activity in postapoptotic lens fibre cells. Cell Death Diff 1995; 2: 47–56.

    Google Scholar 

  91. Torriglia A, Chaudin E, Chany-Fournier F, Jeanny JC, Courtois Y, Counis MF. Involvement of DNase II in nuclear degeneration during lens cell differentiation. J Biol Chem 1995;270:28579–85.

    PubMed  CAS  Google Scholar 

  92. Perez-Sala D, Collado-Escobar D, Mollinedo F. Intracellular alkinization suppresses lovastatin-induced apoptosis in HL-60 cells through the inactivation of a pH-dependent endonuclease. J Biol Chem 1995; 270: 6235–45.

    PubMed  CAS  Google Scholar 

  93. Deng GE, Podack ER. Deoxyribonuclease induction in apoptotic cytotoxic T lymphocytes. FASEB J 1995; 9: 665–9.

    PubMed  CAS  Google Scholar 

  94. Pandey S, Walker PR, Sikorska M. Separate pools of endonuclease activity are responsible for internucleosomal and high molecular mass DNA fragmentation during apoptosis. Biochem Cell Biol 1994; 72: 625–9.

    PubMed  CAS  Google Scholar 

  95. Ueda N, Walker PD, Hsu SM, Shah SV. Activation of a 15-kDa endonuclease in hypoxia/reoxygenation injury without morphological features of apoptosis. Proc Natl Acad Sci USA 1995; 92: 7202–6.

    PubMed  CAS  Google Scholar 

  96. Ribeiro JM, Carson DA. Ca2+/Mg2+-dependent endonuclease from human spleen: purification properties and role in apoptosis. Biochemistry 1993; 32: 9129–36.

    PubMed  CAS  Google Scholar 

  97. Walker PR, Weaver VM, Lach B, LeBlanc J, Sikorska M. Endonuclease activities associated with high molecular weight and internucleosomal DNA fragmentation in apoptosis. Exp Cell Res 1994; 213: 100–6.

    PubMed  CAS  Google Scholar 

  98. Earnshaw WC. Nuclear changes in apoptosis. Curr Opin Cell Biol 1995; 7: 337–43.

    PubMed  CAS  Google Scholar 

  99. Cohen GM, Sun X-M, Fearnhead H, MacFarlane M, Brown DG, Snowden RT, Dinsdale D. Formation of large molecular weight fragments of DNA is a key committed step of apoptosis in thymocytes. J Immunol 1994; 153: 507–16.

    PubMed  CAS  Google Scholar 

  100. Weaver VM, Lach B, Walker PR, Sikorska M. Role of proteolysis in apoptosis: involvement of serine proteases in internucleosomal DNA fragmentation in immature thymocytes. Biochem Cell Biol 1993; 71: 488–500.

    PubMed  CAS  Google Scholar 

  101. Walker PR, Sikorska M. Endonuclease activities, chromatin structure, and DNA degradation in apoptosis. Biochem Cell Biol 1994; 72: 615–23.

    PubMed  CAS  Google Scholar 

  102. Luciano AM, Pappalardo A, Ray C, Peluso JJ. Epidermal growth factor inhibits large granulosa cell apoptosis by stimulating progesterone synthesis and regulating the distribution of intracellular free calcium. Biol Reprod 1994; 51: 646–54.

    PubMed  CAS  Google Scholar 

  103. Tilly JL, Tilly KI. Inhibitors of oxidative stress mimic the ability of follicle-stimulating hormone to suppress apoptosis in cultured rat ovarian follicles. Endocrinology 1995; 136: 242–52.

    PubMed  CAS  Google Scholar 

  104. Lindhout E, Lakeman A, de Groot C. Follicular dendritic cells inhibit apoptosis in human B lymphocytes by a rapid and irreversible blockade of preexisting endonuclease. J Exp Med 1995; 181: 1985–95.

    PubMed  CAS  Google Scholar 

  105. Eisenhauer KM, Chun SY, Billig H, Hsueh AJ. Growth hormone suppression of apoptosis in preovulatory rat follicles and partial neutralization by insulin-like growth factor binding protein. Biol Reprod 1995; 53: l3–20.

    Google Scholar 

  106. Chun SY, Eisenhauer KM, Kubo M, Hsueh AJ. Interleukin-1 beta suppresses apoptosis in rat ovarian follicles by increasing nitric oxide production. Endocrinology 1995; 136: 3120–7.

    PubMed  CAS  Google Scholar 

  107. Quirk SM, Cowan RG, Joshi SG, Henrikson KP. Fas antigen-mediated apoptosis in human granulosa/luteal cells. Biol Reprod 1995; 52: 279–87.

    PubMed  CAS  Google Scholar 

  108. Jo T, Tomiyama T, Ohashi K, Saji F, Tanizawa O, Ozaki M, Yamamoto R, Yamamoto T, Nishizawa Y, Terada N. Apoptosis of cultured mouse luteal cells induced by tumor necrosis factor-alpha and interferon-gamma. Anat Record 1995; 241: 70–6.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boone, D.L., Tsang, B.K. (1997). Apoptosis in the Ovary: The Role of DNase I. In: Tilly, J.L., Strauss, J.F., Tenniswood, M. (eds) Cell Death in Reproductive Physiology. Proceedings in the Serono Symposia USA Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1944-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1944-6_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7351-6

  • Online ISBN: 978-1-4612-1944-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics