Skip to main content

ICER and the Nuclear Response to cAMP

  • Chapter
Cell Death in Reproductive Physiology

Part of the book series: Proceedings in the Serono Symposia USA Series ((SERONOSYMP))

Abstract

The mechanisms governing the balance between cellular differentiation and proliferation rely upon a complex and versatile array of signal transduction pathways. Among the several existing pathways, the one mediated by the second messenger, cyclic adenosine monophosphate (cAMP), has been clearly linked to cellular growth and differentiation (1–6). Cyclic AMP has a crucial role in the regulation of cell proliferation in the mammalian endocrine system. Several hormones that activate the cAMP-dependent signaling pathway in target endocrine cells also promote growth. The notion that activation of the cAMP transduction pathway results in modulation of gene expression (7) suggests that nuclear effectors of this pathway may be involved in the regulation of the cell cycle and proliferation (8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asa SL, Kovacs K, Hammer GD, Liu B, Roos BA, Low MJ. Pituitary corticotroph hyperplasia in rats implanted with a medullary thyroid carcinoma cell line transfected with a corticotropin-releasing hormone complementary deoxyribonucleic acid expression vector. Endocrinology 1992; 131: 715–20.

    Article  PubMed  CAS  Google Scholar 

  2. Burton FH, Hasel KW, Bloom FE, Sutcliffe JG. Pituitary hyperplasia and gigantism in mice caused by cholera toxin transgene. Nature 1991; 350: 74–7.

    Article  PubMed  CAS  Google Scholar 

  3. Di Blasio AM, Fujii DK, Yamamoto M, Martin MC, Jaffe RB. Maintenance of cell proliferation and steroidogenesis in culture human adrenal cells chronically exposed to adrenocorticotropic hormone: rationalization of in vitro and in vivo findings. Biol Reprod 1990; 42: 683–91.

    Article  PubMed  Google Scholar 

  4. Dumont JE, Jauniaux J-C, Roger PP. The cyclic AMP-mediated stimulation of cell proliferation. TIBS 1989; 14: 67–71.

    PubMed  CAS  Google Scholar 

  5. Lin C, Lin S-C, Chang C-P, Rosenfeld MG. Pit-l-dependent expression of the receptor for growth hormone releasing factor mediates pituitary cell growth. Nature 1992; 360: 765–8.

    Article  PubMed  CAS  Google Scholar 

  6. Struthers RS, Vale WW, Arias C, Sawchenko PE, Montminy MR. Somatotroph hypoplasia and dwarfism in transgenic mice expressing a non-phosphorylatable CREB mutant. Nature 1991; 350: 622–4.

    Article  PubMed  CAS  Google Scholar 

  7. Lalli E, Sassone-Corsi P. Signal transduction and gene regulation: the nuclear response to cAMP. J Biol Chem 1994; 269: 17359–62.

    PubMed  CAS  Google Scholar 

  8. Desdouets C, Matesic G, Molina CA, et al. Cell cycle regulation of cyclin A gene expression by the cyclic AMP-responsive transcription factors CREB and CREM. Mol Cell Biol 1995; 15: 3301–9.

    PubMed  CAS  Google Scholar 

  9. Borrelli E, Montmayeur JP, Foulkes NS, Sassone-Corsi P. Signal transduction and gene control: the cAMP pathway. CRC Rev Oncogenesis 1992; 3: 321–38.

    CAS  Google Scholar 

  10. Nigg EA, Hilz H, Eppenberger HM, Dutly F. Rapid and reversible translocation of the catalytic subunit of cAMP-dependent protein kinase type II from the Golgi complex to the nucleus. EMBO J 1985; 4: 2801–9.

    PubMed  CAS  Google Scholar 

  11. Habener JF. Cyclic AMP-response element binding proteins: a cornucopia of transcription factors. Mol Endocrinol 1990; 4: 1087–94.

    Article  PubMed  CAS  Google Scholar 

  12. De Groot RP, Sassone-Corsi P. Hormonal control of gene expression: multiplicity and versatility of cyclic adenosine 3’, 5’-monophosphate-responsive nuclear regulators. Mol Endocrinol 1993; 10: 145–53.

    Article  Google Scholar 

  13. Hoeffler JP, Lustbader JW, Chen CY. Identification of multiple nuclear factors that interact with cyclic adenosine 3’,5’-monophosphate response element-binding protein and activating transcription factor-2 by protein-protein interactions. Mol Endocrinol 1991; 5: 256–66.

    Article  PubMed  CAS  Google Scholar 

  14. Gonzalez GA, Menzel P, Leonard J, Fischer WH, Montminy MR. Characterization of motifs which are critical for activity of the cyclic AMP-responsive transcription factor CREB. Mol Cell Biol 1991; 11: 1306–12.

    PubMed  CAS  Google Scholar 

  15. Foulkes NS, Borrelli E, Sassone-Corsi P. CREM gene: use of alternative DNA-binding domains generates multiple antagonists of cAMP-induced transcription. Cell 1991; 64: 739–49.

    Article  PubMed  CAS  Google Scholar 

  16. Foulkes NS, Laoide BM, Schlotter F, Sassone-Corsi P. Transcriptional antagonist cAMP-responsive element modulator (CREM) down-regulates c-fos cAMP-induced expression. Proc Natl Acad Sci USA 1991; 88: 5448–52.

    Article  PubMed  CAS  Google Scholar 

  17. Foulkes NS, Mellstrom B, Benusiglio E, Sassone-Corsi P. Developmental switch of CREM function during spermatogenesis: from antagonist to activator. Nature 1992; 355: 80–4.

    Article  PubMed  CAS  Google Scholar 

  18. Foulkes NS, Schlotter F, Pevet P, Sassone-Corsi P. Pituitary hormone FSH directs the CREM functional switch during spermatogenesis. Nature 1993; 362: 264–7.

    Article  PubMed  CAS  Google Scholar 

  19. Laoide BM, Foulkes NS, Schlotter F, Sassone-Corsi P. The functional versatility of CREM is determined by its modular structure. EMBO J 1993; 12: 1179–91.

    PubMed  CAS  Google Scholar 

  20. Delmas V, Laoide BM, Masquilier D, de Groot RP, Foulkes NS, Sassone-Corsi P. Alternative usage of initiation codons in mRNA encoding the cAMP-responsiveelement modulator generates regulators with opposite functions. Proc Natl Acad Sci USA 1992; 89: 4226–30.

    Article  PubMed  CAS  Google Scholar 

  21. Masquilier D, Foulkes NS, Mattei MG, Sassone-Corsi P. Human CREM gene: evolutionary conservation, chromosomal localization, and inducibility of the transcript. Cell Growth Differen 1993; 4: 931–7.

    CAS  Google Scholar 

  22. Molina CA, Foulkes NS, Lalli E, Sassone-Corsi P. Inducibility and negative auto-regulation of CREM: an alternative promoter directs the expression of ICER, an early response repressor. Cell 1993; 75: 875–86.

    Article  PubMed  CAS  Google Scholar 

  23. Stehle JH, Foulkes NS, Molina CA, Simonneaux V. Pevet P. Sassone-Corsi P. Adrenergic signals direct rhythmic expression of transcriptional repressor CREM in the pineal gland. Nature 1993; 365: 314–20.

    Article  PubMed  CAS  Google Scholar 

  24. Delmas V. van der Hoorn F, Mellstrom B, Jegou B, Sassone-Corsi P. Induction of CREM activator proteins in spermatids: downstream targets and implications for haploid germ cell differentiation. Mol Endocrinol 1993; 7: 1502–14.

    Article  PubMed  CAS  Google Scholar 

  25. Nantel F, Monaco L, Foulkes N, Masquilier D, Lemeur M, Henriksen K, Dierich A, Parvinen M, Sassone-Corsi P. Spermiogenеsis deficiency and germ-cell apoptosis in CREM-mutant mice. Nature 1996; 380: 159–62.

    Article  PubMed  CAS  Google Scholar 

  26. Mellon PL, Clegg CH, Correll LA, McKnight G. Regulation of transcription by cyclic AMP-dependent protein kinase. Proc Natl Acad Sci USA 1989; 86: 4887–91.

    Article  PubMed  CAS  Google Scholar 

  27. Meyer TE. Waeber G, Lin J, Beckmann W, Habener JF. The promoter of the gene encoding 3’,5’-cyclic adenosine monophosphate (cAMP) response element binding protein contains cAMP response elements: evidence for positive autoregulation of gene transcription. Endocrinology 1993; 132: 770–80.

    Article  PubMed  CAS  Google Scholar 

  28. Cole TJ, Copeland NG, Gilbert DJ, Jenkins NA, Schutz G, Ruppert S. The mouse CREB (cAMP responsive element binding protein) gene: structure, promoter analysis, and chromosomal localization. Genomics 1992; 13: 974–82.

    Article  PubMed  CAS  Google Scholar 

  29. Delegeane A, Ferland L, Mellon PL. Tissue specific enhancer of the human glycoprotein hormone a-subunit gene: dependence on cyclic AMP-inducible elements. Mo1 Cell Biol 1987; 7: 3994–4002.

    CAS  Google Scholar 

  30. McCormick A, Brady H, Theill L, Karin M. Regulation of the pituitary-specific homeobox gene GHF1 by cell-autonomous and enviromental cues. Nature 1990; 345: 829–32.

    Article  PubMed  CAS  Google Scholar 

  31. Hai T-Y, Liu F, Coukos WJ, Green MR. Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA binding heterodimers. Genes Dev 1989; 3: 2083–90.

    Article  PubMed  CAS  Google Scholar 

  32. Reiter RJ. Pineal gland: Interface between the photoperiodic environment and the endocrine system. Trends Endocrinol Metab 1991: 1: 13.

    Google Scholar 

  33. Tamarkin L, Baird CJ, Almeida O. Melatonin: a coordinating signal for mammalian reproduction? Science 1985; 227: 774.

    Article  Google Scholar 

  34. Moore RY. Neuroendocrine regulation of reproduction. In: Yen SSC, Jaffe RB, eds. Reproductive endocrinology. Philadelphia: Saunders 1978: 3–33.

    Google Scholar 

  35. Klein DC. Photoneural regulation of the mammalian pineal gland. In: Photoperiodism, melatonin, and the pineal gland. London: Pitman, 1985: 38–56.

    Google Scholar 

  36. Sudgen D, Vanecek J, Klein DC, Thomas TD. Activation of protein kinase C potentiates isoprenaline-induced cyclic AMP accumulation in rat pinealocytes. Nature 1985; 314: 359.

    Article  Google Scholar 

  37. Vanecek J, Sudgen D, Weller J, Klein DC. Atypical synergistic a1 and P-adrenergic regulation of adenosine 3’,5 ’ Endocrinology. 1985; 116: 2167.

    Google Scholar 

  38. Takahashi JS. Circadian clock a la CREM. Nature 1993; 365: 299.

    Article  PubMed  CAS  Google Scholar 

  39. Foulkes NS, Duval G, Sassone-Corsi P. Adaptive inducibility of CREM as transcriptional memory of circadian rhythms. Nature 1996; 381: 83–5.

    Article  PubMed  CAS  Google Scholar 

  40. Wong C-C, Döhler K-D, Atkinson MJ, Geerling H, Hesch R-F, von zur Mühlen A. Influence of age, strain and season on diurnal periodicity of thyroid stimulating hormone, thyroxine, triiodothyronine and parathyroid hormone in the serum of male laboratory rats. Acta Endocrinol 1983; 102: 377–85.

    PubMed  CAS  Google Scholar 

  41. Utiger RD. The pathogenesis of autoimmune thyroid disease. In: Felig P, Baxter JD, Broadus AE, Frohman LA, eds. Endocrinology and Metabolism, New York: MacGrawHill, 1987; 389–472.

    Google Scholar 

  42. Akamizu T, Ikuyama S, Saji M, et al. Cloning, chromosomal assignment, and regulation of the rat thyrotropin receptor: expression of the gene is regulated by thyrotropin, agents that increase cAMP levels, and thyroid autoantibodies. Proc NatlAcad Sci USA 1990; 87: 5677–81.

    Article  CAS  Google Scholar 

  43. Nagayama Y, Rapoport B. The thyrotropin receptor 25 years after its discovery: new insight after its molecular cloning. Mol Endocrinol 1992; 6: 145–56.

    Article  PubMed  CAS  Google Scholar 

  44. Avvedimento EV, Musti AM, Ueffing M, et al. Reversible inhibition of a thyroid-specific trans-acting factor by Ras. Genes Develop 1991; 5: 22–8.

    Article  PubMed  CAS  Google Scholar 

  45. Civitareale D, Lonigro R, Sinclair AJ, Di Lauro R. A thyroid-specific nuclear protein essential for tissue-specific expression of the thyroglobulin promoter. EMBO J 1989; 8: 2537–42.

    PubMed  CAS  Google Scholar 

  46. Francis-Lang H, Price M, Polycarpou-Schwarz M, Di Lauro R. Multiple mechanisms of interference between transformation and differentiation in thyroid cells. Mol Cell Biol 1992; 12: 576–88.

    PubMed  CAS  Google Scholar 

  47. Hansen C, Javaux F, Juvenal G, Vassart G, Cristophe D. cAMP-dependent binding of a trans-acting factor to the thyroglobulin promoter. Biochem Biophys Res Commun 1989; 160: 722–31.

    Article  PubMed  CAS  Google Scholar 

  48. Saji M, Akamizu T, Sanchez M, et al. Regulation of thyrotropin receptor gene expression in rat FRTL-5 thyroid cells. Endocrinology 1992; 130: 520–33.

    Article  PubMed  CAS  Google Scholar 

  49. Lalli E, Sassone-Corsi P. Thyroid-stimulating hormone (TSH)-directed induction of the CREM gene in the thyroid gland participates in the long-term desensitization of the TSH receptor. Proc NatlAcad Sci USA 1995; 92: 9633–7.

    Article  CAS  Google Scholar 

  50. Skinner MK. Cell-cell interactions in the testis. Endocr Rev 1991; 12: 45–77.

    Article  PubMed  CAS  Google Scholar 

  51. Monaco L, Foulkes NS, Sassone-Corsi P. Pituitary follicle-stimulating hormone (FSH) induces CREM gene expression in Sertoli cells: involvement in long-term desensitization of the FSH receptor. Proc Natl Acad Sci USA 1995; 92: 10673–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Molina, C.A. (1997). ICER and the Nuclear Response to cAMP. In: Tilly, J.L., Strauss, J.F., Tenniswood, M. (eds) Cell Death in Reproductive Physiology. Proceedings in the Serono Symposia USA Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1944-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1944-6_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7351-6

  • Online ISBN: 978-1-4612-1944-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics